curcumin has been researched along with pregna-4-17-diene-3-16-dione* in 2 studies
2 review(s) available for curcumin and pregna-4-17-diene-3-16-dione
Article | Year |
---|---|
Effect of NF-κB inhibition on chemoresistance in biliary-pancreatic cancer.
Biliary cancer and pancreatic cancer are considered to be difficult diseases to cure. Although complete resection provides the only means of curing these cancers, the rate of resectability is not high. Therefore, chemotherapy is often selected in patients with advanced unresectable biliary-pancreatic cancer. Many combination chemotherapy regimens have been applied in clinical trials. However, the survival time is not satisfactory. On the other hand, most chemotherapeutic agents induce anti-apoptotic transcriptional factor nuclear factor kappa b (NF-κB) activation, and agent-induced NF-κB activation is deeply involved in the onset of chemoresistance. Recently, novel approaches to potentiating chemosensitivity in cases of biliary-pancreatic cancer using NF-κB inhibitors with cytotoxic agents have been reported, most of which comprise translational research, although some clinical trials have also been conducted. Nevertheless, to date, there is no breakthrough chemotherapy regimen for these diseases. As some reports show promising data, combination chemotherapy consisting of a NF-κB inhibitor with chemotherapeutic agents seems to improve chemosensitivity and prolong the survival time of biliary-pancreatic cancer patients. Topics: Antineoplastic Combined Chemotherapy Protocols; Benzamidines; Biliary Tract Neoplasms; Bortezomib; Camptothecin; Curcumin; Deoxycytidine; Ditiocarb; Drug Resistance, Neoplasm; Gemcitabine; Guanidines; Humans; Irinotecan; Molecular Targeted Therapy; NF-kappa B; Paclitaxel; Pancreatic Neoplasms; Pregnenediones; Treatment Outcome | 2015 |
Natural products as a gold mine for arthritis treatment.
Arthritis, an inflammation of the joints, is usually a chronic disease that results from dysregulation of pro-inflammatory cytokines (e.g. tumour necrosis factor and interleukin-1beta) and pro-inflammatory enzymes that mediate the production of prostaglandins (e.g. cyclooxygenase-2) and leukotrienes (e.g. lipooxygenase), together with the expression of adhesion molecules and matrix metalloproteinases, and hyperproliferation of synovial fibroblasts. All of these factors are regulated by the activation of the transcription factor nuclear factor-kappaB. Thus, agents that suppress the expression of tumour necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lipooxygenase, matrix metalloproteinases or adhesion molecules, or suppress the activation of NF-kappaB, all have potential for the treatment of arthritis. Numerous agents derived from plants can suppress these cell signaling intermediates, including curcumin (from turmeric), resveratrol (red grapes, cranberries and peanuts), tea polyphenols, genistein (soy), quercetin (onions), silymarin (artichoke), guggulsterone (guggul), boswellic acid (salai guggul) and withanolides (ashwagandha). Indeed, several preclinical and clinical studies suggest that these agents have potential for arthritis treatment. Although gold compounds are no longer employed for the treatment of arthritis, the large number of inexpensive natural products that can modulate inflammatory responses, but lack side effects, constitute 'goldmines' for the treatment of arthritis. Topics: Animals; Arthritis; Curcumin; Ergosterol; Humans; Phytotherapy; Plant Preparations; Pregnenediones; Resveratrol; Stilbenes; Triterpenes; Withania | 2007 |