curcumin and oltipraz

curcumin has been researched along with oltipraz* in 2 studies

Other Studies

2 other study(ies) available for curcumin and oltipraz

ArticleYear
Multi-layer polymeric implants for sustained release of chemopreventives.
    Cancer letters, 2012, Dec-29, Volume: 326, Issue:1

    Poor oral bioavailability limits the use of many chemopreventives in the prevention and treatment of cancer. To overcome this limitation, we report an improvised implant formulation ("coated" implants) using curcumin, individual curcuminoids, withaferin A and oltipraz. This method involves the coating of blank polycaprolactone implants with 20-30 layers of 10-20% polycaprolactone solution in dichloromethane containing 0.5-2% of the test agent. The in vitro release showed that while oltipraz was released with almost zero-order kinetics over 8 weeks, curcumin, individual curcuminoids and withaferin A were released with some initial burst. The in vivo release was determined by grafting implants subcutaneously in A/J mice. When delivered by coated implants, oltipraz significantly diminished lung DNA adducts in mice treated with dibenzo[a,l]pyrene compared with sham treatment (28 ± 7 versus 54 ± 17 adducts/10(9) nucleotides). Withaferin A also diminished DNA adducts, but it was insignificant. Curcumin and individual curcuminoids were ineffective. Analysis of lung, liver and brain by UPLC-fluorescence showed the presence of the three test curcuminoids indicating effectiveness of the implant delivery system. Further, based on its known antitumor activity in vivo, withaferin A given via the implants significantly inhibited human lung cancer A549 xenograft in athymic nude mice, while it was ineffective when the same total dose was administered i.p. and required over 2-fold higher dose to elicit effectiveness. Together, our data suggest that coated polymeric implants can accommodate heat-labile compounds, can furnish sustained release for long duration, and elicit DNA damage-inhibiting and anti-tumor activities.

    Topics: Animals; Anticarcinogenic Agents; Biological Availability; Coated Materials, Biocompatible; Curcumin; DNA Adducts; Female; Humans; Infusion Pumps, Implantable; Mice; Mice, Nude; Polyesters; Polymers; Pyrazines; Thiones; Thiophenes; Tissue Distribution; Withanolides; Xenograft Model Antitumor Assays

2012
Increased expression of the MGMT repair protein mediated by cysteine prodrugs and chemopreventative natural products in human lymphocytes and tumor cell lines.
    Carcinogenesis, 2007, Volume: 28, Issue:2

    O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein which protects the cellular genome and critical oncogenic genes from the mutagenic action of endogenous and exogenous alkylating agents. An expedited elimination of O6-alkylguanines by increasing MGMT activity levels is likely to be a successful chemoprevention strategy. Here, we report for the first time that cysteine/glutathione enhancing drugs and certain plant antioxidants possess the ability to increase human MGMT expression beyond its steady-state levels that may afford protection. The non-toxic cysteine prodrugs, 2-oxothiazolidine-4-carboxylic acid (OTC) and N-acetyl-L-cysteine (NAC), metabolized, respectively by 5-oxoprolinase and acylases, increased the MGMT protein and its repair activity levels in a dose- and time-dependent manner in several cancer cell lines and peripheral blood lymphocytes with a maximum of 3-fold increase by 72 h. The natural antioxidants, namely, curcumin, silymarin, sulforaphane and resveratrol were also effective in raising the MGMT levels to different extents. Among the synthetic agents, oltipraz and N-(4-hydroxyphenyl) retinamide (4-HPR) also increased MGMT expression, albeit to a lesser extent. Augmented mRNA levels accounted at least, in part, for the increased activity of MGMT in this setting. However, evidence from cysteine/methionine deprivation, acivicin treatment, and protein synthesis measurements in OTC-treated cells suggested that an increased cysteine flux also contributed significantly to enhanced MGMT expression. Many of these treatments increased the glutathione S-transferase-P1 (GSTP1) levels as well. These findings raise the possibility of MGMT-targeted chemoprevention strategies through dietary supplementation of OTC and herbal antioxidants. Further, the studies reveal the antioxidant responsiveness of the human MGMT gene.

    Topics: Acetylcysteine; Anticarcinogenic Agents; Antioxidants; Base Sequence; Biological Products; Blotting, Western; Cell Line, Tumor; Curcumin; Cysteine; DNA Modification Methylases; DNA Primers; DNA Repair Enzymes; Dose-Response Relationship, Drug; Fenretinide; Glutathione; Glutathione S-Transferase pi; Humans; Lymphocytes; Prodrugs; Pyrazines; RNA, Messenger; Silymarin; Thiones; Thiophenes; Tumor Suppressor Protein p14ARF; Tumor Suppressor Proteins

2007