curcumin has been researched along with laponite* in 2 studies
2 other study(ies) available for curcumin and laponite
Article | Year |
---|---|
pH-sensitive biosystem based on laponite RD/chitosan/polyvinyl alcohol hydrogels for controlled delivery of curcumin to breast cancer cells.
In this study, a pH-responsive hydrogels based on laponite rapid dispersion (Lap®)/chitosan (CS)/polyvinyl alcohol (PVA) designed and was used for controlled delivery of the anticancer drug curcumin (CUR). First, it was accomplished by dissolving CUR in Lap® dispersion under the influence of the pH of the environment. Then, in the presence of Lap®CUR cross-linking was incorporated between CS and PVA polymers. The structural features of Lap®CUR/CS@PVA hydrogels are characterized using FT-IR, XRD, SEM/EDS, TEM, TGA, Zeta potential, and XPS. The in vitro drug release profiles confirmed a pH-responsive controlled release of CUR in acidic pH for all hydrogels. During 12 h, the cumulative release of CUR from Lap®CUR/0.1CS@PVA hydrogel was 27.9% and 12.3%, at pH 5.5 and 7.4, respectively. While during three days the release rate reached 48.5% and 18.5%. The CUR release kinetic from hydrogels also suggests that the kinetic data well fitted to the Korsmeyer-Peppas, diffusion-controlled and Fickian diffusion. Furthermore, in vitro cytotoxicity and DAPI staining study clearly illustrated that Lap®CUR/0.1CS@PVA hydrogel had lower cytotoxicity than CUR against MDA-MB 231 cancer cells, which confirmed the controlled release of drug through hydrogels. Meanwhile, in vitro hemolysis, antioxidant and antibacterial tests revealed that the prepared hydrogels have good blood compatibility, excellent antioxidant properties, and antibacterial activity. Based on the obtained results, the designed hydrogels could be potentially applied as pH-controlled drug delivery systems for cancer therapy. Topics: Anti-Bacterial Agents; Antioxidants; Breast Neoplasms; Chitosan; Curcumin; Delayed-Action Preparations; Drug Carriers; Drug Liberation; Female; Humans; Hydrogels; Hydrogen-Ion Concentration; Polyvinyl Alcohol; Spectroscopy, Fourier Transform Infrared | 2023 |
Self-assembled caseinate-laponite® nanocomposites for curcumin delivery.
In this study, novel self-assembled protein-clay nanocomposites were developed for curcumin delivery. Experimentally, curcumin was dissolved and deprotonated in sodium caseinate-laponite® (NaCas-LAP) dispersion at pH 12.0 for 30 min followed by neutralization to pH = 7. Due to the pH-mediated dissociation and re-association process, curcumin was successfully encapsulated into NaCas-LAP nanocomposites. The colloidal properties and encapsulation capabilities of NaCas-LAP nanocomposites were investigated, including particle size, zeta potential, encapsulation efficiency, release profile in simulated gastrointestinal tract, as well as nanoscale morphology. The results indicated that upon neutralization, NaCas-LAP nanocomposites were re-associated into smaller particles due to strong hydrophobic interactions among NaCas, LAP and curcumin. Specifically, 0.10% curcumin loaded nanocomposites prepared with 2% NaCas and 0.5% LAP showed improved encapsulation performance (73.4%) with smaller particle size (100 nm). The as-prepared protein-clay nanocomposites hold promising potential to deliver lipophilic bioactive compounds, such as curcumin. Topics: Caseins; Curcumin; Nanocomposites; Nanoparticles; Particle Size; Silicates | 2021 |