curcumin and lactacystin

curcumin has been researched along with lactacystin* in 4 studies

Reviews

1 review(s) available for curcumin and lactacystin

ArticleYear
Natural compounds with proteasome inhibitory activity for cancer prevention and treatment.
    Current protein & peptide science, 2008, Volume: 9, Issue:3

    The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structures and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers.

    Topics: Acetylcysteine; Animals; Anticarcinogenic Agents; Antineoplastic Agents; Boronic Acids; Bortezomib; Clinical Trials as Topic; Curcumin; Humans; Neoplasms; Pentacyclic Triterpenes; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Triterpenes; Ubiquitin

2008

Other Studies

3 other study(ies) available for curcumin and lactacystin

ArticleYear
The effect of the NF-kappa B inhibitors curcumin and lactacystin on myogenic differentiation of rhabdomyosarcoma cells.
    Differentiation; research in biological diversity, 2012, Volume: 83, Issue:5

    Rhabdomyosarcoma is a soft tissue sarcoma mainly seen in children. Despite considerable progress within the last few years, therapeutic approaches for this type of tumor are still limited. The respective tumor cells originate from myogenic precursor cells and are characterized by a blockade in their differentiation program. Interestingly, there is a direct inverse correlation between the differentiation status of a specific rhabdomyosarcoma cell and its metastatic potential. Thus, here, we tested whether the ubiquitous transcription factor NF-κB, which regulates myogenic differentiation and is also a promising therapeutic target in the treatment of other types of tumors, might be an interesting candidate for the development of novel rhabdomyosarcoma treatment strategies. For this purpose, we analyzed NF-κB activity (classical pathway) in myoblasts with different differentiation potential, specifically in three different rhabdomyosarcoma cell lines. In addition, we inhibited NF-κB activity in these cells and analyzed the effects on myogenic differentiation. We show that after the induction of differentiation, NF-κB activity declines rapidly in normal myoblasts, but only slightly in rhabdomyosarcoma cells. However, after treatment of the cells with two different small-molecule NF-κB-inhibiting compounds, the IKK inhibitor curcumin and the proteasome inhibitor lactacystin, we found that neither curcumin nor lactacystin promoted myogenic differentiation in either normal myoblasts or rhabdomyosarcoma cells. Taken together, our data suggest that treatment with curcumin or lactacystin might not be a suitable approach in the treatment of rhabdomyosarcoma.

    Topics: Acetylcysteine; Antineoplastic Agents; Apoptosis; Cell Differentiation; Cell Line, Tumor; Curcumin; Gene Expression Regulation, Neoplastic; Humans; Molecular Targeted Therapy; Muscle Development; Myoblasts; NF-kappa B; Phosphorylation; Rhabdomyosarcoma; Signal Transduction

2012
Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation.
    Oncogene, 2002, Dec-12, Volume: 21, Issue:57

    Cyclin D1 is a proto-oncogene that is overexpressed in many cancers including breast and prostate. It plays a role in cell proliferation through activation of cyclin-dependent kinases. Curcumin, a diferuloylmethane, is a chemopreventive agent known to inhibit the proliferation of several breast and prostate cancer cell lines. It is possible that the effect of curcumin is mediated through the regulation of cyclin D1. In the present report we show that inhibition of the proliferation of various prostate, breast and squamous cell carcinoma cell lines by curcumin correlated with the down-regulation of the expression of cyclin D1 protein. In comparison, the down-regulation by curcumin of cyclin D2 and cyclin D3 was found only in selective cell lines. The suppression of cyclin D1 by curcumin led to inhibition of CDK4-mediated phosphorylation of retinoblastoma protein. We found that curcumin-induced down-regulation of cyclin D1 was inhibited by lactacystin, an inhibitor of 26S proteosome, suggesting that curcumin represses cyclin D1 expression by promoting proteolysis. We found that curcumin also down-regulated mRNA expression, thus suggesting transcriptional regulation. Curcumin also inhibited the activity of the cyclin D1 promoter-dependent reporter gene expression. Overall our results suggest that curcumin down-regulates cyclin D1 expression through activation of both transcriptional and post-transcriptional mechanisms, and this may contribute to the antiproliferative effects of curcumin against various cell types.

    Topics: Acetylcysteine; Base Sequence; Cell Division; Curcumin; Cyclin D1; Cyclin D2; Cyclin D3; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinases; Cyclins; DNA Primers; Down-Regulation; Humans; Phosphorylation; Promoter Regions, Genetic; Proto-Oncogene Mas; Proto-Oncogene Proteins; Retinoblastoma Protein; RNA, Messenger; Tumor Cells, Cultured

2002
Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade.
    Blood, 2001, Apr-01, Volume: 97, Issue:7

    Cotreatment with a minimally toxic concentration of the protein kinase C (PKC) activator (and down-regulator) bryostatin 1 (BRY) induced a marked increase in mitochondrial dysfunction and apoptosis in U937 monocytic leukemia cells exposed to the proteasome inhibitor lactacystin (LC). This effect was blocked by cycloheximide, but not by alpha-amanitin or actinomycin D. Qualitatively similar interactions were observed with other PKC activators (eg, phorbol 12-myristate 13-acetate and mezerein), but not phospholipase C, which does not down-regulate the enzyme. These events were examined in relationship to functional alterations in stress (eg, SAPK, JNK) and survival (eg, MAPK, ERK) signaling pathways. The observations that LC/BRY treatment failed to trigger JNK activation and that cell death was unaffected by a dominant-interfering form of c-JUN (TAM67) or by pretreatment with either curcumin or the p38/RK inhibitor, SB203580, suggested that the SAPK pathway was not involved in potentiation of apoptosis. In marked contrast, perturbations in the PKC/Raf/MAPK pathway played an integral role in LC/BRY-mediated cell death based on evidence that pretreatment of cells with bisindolylmaleimide I, a selective PKC inhibitor, or geldanamycin, a benzoquinone ansamycin, which destabilizes and depletes Raf-1, markedly suppressed apoptosis. Furthermore, ERK phosphorylation was substantially prolonged in LC/BRY-treated cells compared to those exposed to BRY alone, and pretreatment with the highly specific MEK inhibitors, PD98059, U0126, and SL327, opposed ERK activation while protecting cells from LC/BRY-induced lethality. Together, these findings suggest a role for activation and/or dysregulation of the PKC/MAPK cascade in modulation of leukemic cell apoptosis following exposure to the proteasome inhibitor LC. (Blood. 2001;97:2105-2114)

    Topics: Acetylcysteine; Amanitins; Aminoacetonitrile; Apoptosis; Benzoquinones; Bryostatins; Butadienes; Curcumin; Cysteine Endopeptidases; Dactinomycin; Diterpenes; Drug Synergism; Enzyme Activation; Flavonoids; Humans; Imidazoles; Indoles; JNK Mitogen-Activated Protein Kinases; Lactams, Macrocyclic; Lactones; Macrolides; Maleimides; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Multienzyme Complexes; Neoplasm Proteins; Nitriles; Nucleic Acid Synthesis Inhibitors; p38 Mitogen-Activated Protein Kinases; Protease Inhibitors; Proteasome Endopeptidase Complex; Protein Kinase C; Protein Synthesis Inhibitors; Proto-Oncogene Proteins c-raf; Pyridines; Quinones; Terpenes; Tetradecanoylphorbol Acetate; Transcription Factor AP-1; Type C Phospholipases; U937 Cells; Ubiquitins

2001