curcumin and gingerol

curcumin has been researched along with gingerol* in 28 studies

Reviews

9 review(s) available for curcumin and gingerol

ArticleYear
Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 137

    All the plants and their secondary metabolites used in the present study were obtained from Ayurveda, with historical roots in the Indian subcontinent. The selected secondary metabolites have been experimentally validated and reported as potent antiviral agents against genetically-close human viruses. The plants have also been used as a folk medicine to treat cold, cough, asthma, bronchitis, and severe acute respiratory syndrome in India and across the globe since time immemorial. The present study aimed to assess the repurposing possibility of potent antiviral compounds with SARS-CoV-2 target proteins and also with host-specific receptor and activator protease that facilitates the viral entry into the host body. Molecular docking (MDc) was performed to study molecular affinities of antiviral compounds with aforesaid target proteins. The top-scoring conformations identified through docking analysis were further validated by 100 ns molecular dynamic (MD) simulation run. The stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Finally, the binding affinities of all the compounds were also compared with a reference ligand, remdesivir, against the target protein RdRp. Additionally, pharmacophore features, 3D structure alignment of potent compounds and Bayesian machine learning model were also used to support the MDc and MD simulation. Overall, the study emphasized that curcumin possesses a strong binding ability with host-specific receptors, furin and ACE2. In contrast, gingerol has shown strong interactions with spike protein, and RdRp and quercetin with main protease (M

    Topics: Antiviral Agents; Catechols; COVID-19 Drug Treatment; Curcumin; Drug Repositioning; Fatty Alcohols; Humans; Medicine, Ayurvedic; Molecular Docking Simulation; Quercetin; SARS-CoV-2; Viral Proteins

2021
Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review.
    Biochemical pharmacology, 2020, Volume: 173

    Atopic diseases (atopic dermatitis, asthma and allergic rhinitis) affects a huge number of people around the world and their incidence rate is on rise. Atopic dermatitis (AD) is more prevalent in paediatric population which sensitizes an individual to develop allergic rhinitis and asthma later in life. The complex pathogenesis of these allergic diseases though involves numerous cellular signalling pathways but redox imbalance has been reported to be critical for induction/perpetuation of inflammatory process under such conditions. The realm of complementary and alternative medicine has gained greater attention because of the reported anti-oxidant/anti-inflammatory properties. Several case studies of treating atopic diseases with homeopathic remedies have provided positive results. Likewise, pre-clinical studies suggest that various natural compounds suppress allergic response via exhibiting their anti-oxidant potential. Despite the reported beneficial effects of phytochemicals in experimental model system, the clinical success has not been documented so far. It appears that poor absorption and bioavailability of natural compounds may be one of the reasons for realizing their full potential. The current paper throws light on impact of phytochemicals in the redox linked cellular and signalling pathways that may be critical in manifestation of atopic diseases. Further, an effort has been made to identify the gaps in the area so that future strategies could be evolved to exploit the medicinal value of various phytochemicals for an improved efficiency.

    Topics: Asthma; Catechols; Curcumin; Dermatitis, Atopic; Fatty Alcohols; Flavonoids; Ginsenosides; Humans; Hypersensitivity; Molecular Structure; Phytochemicals; Resveratrol

2020
Cancer chemoprevention - selected molecular mechanisms.
    Postepy higieny i medycyny doswiadczalnej (Online), 2017, Mar-02, Volume: 71, Issue:0

    The effect of diet on cancer formation and prevention of carcinogenesis has attracted considerable attention for years and is the subject of several studies. Some components of the daily diet, such as resveratrol, curcumin, genistein, gingerol, can significantly reduce the risk of cancer or affect the rate of tumor progression. Cancer chemoprevention assumes the use of natural or synthetic biologically active substances in order to prevent, inhibit or reverse the progression of cancer. There are many biologically active compounds in several natural products, i.e. garlic, ginger, soy, curcuma, tomatoes, cruciferous plants or green tea. Their chemopreventive activity is based on the inhibition of processes underlying carcinogenesis (inflammation, transformation and proliferation), but also affects the final phase of carcinogenesis - angiogenesis and metastasis. Despite the relatively low toxicity of chemopreventive agents, their molecular targets often coincide with the objectives of the currently used cancer therapies. The widespread use of chemopreventive agents may contribute to reduction of the rate of cancer incidence, and increase the effectiveness of conventional cancer therapies. In the present study, selected molecular mechanisms of the chemopreventive activity have been discussed, especially their involvement in the regulation of signal transduction, cell cycle regulation, apoptosis, metastasis and angiogenesis. The role of chemopreventive agents in the inflammatory process, the metabolism of xenobiotics and multidrug resistance has been also characterized.

    Topics: Anticarcinogenic Agents; Apoptosis; Catechols; Chemoprevention; Curcumin; Fatty Alcohols; Humans; Neoplasms; Neovascularization, Pathologic; Resveratrol; Signal Transduction; Stilbenes

2017
Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals.
    Asian Pacific journal of cancer prevention : APJCP, 2015, Volume: 16, Issue:16

    Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs.

    Topics: Abietanes; Alkaloids; Allyl Compounds; Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; Benzodioxoles; beta Carotene; Biflavonoids; Capsaicin; Catechin; Catechols; Curcumin; Dietary Supplements; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Drug Synergism; Fatty Alcohols; Furocoumarins; Humans; Indoles; Limonins; Neoplasms; Phytotherapy; Piperidines; Polyunsaturated Alkamides; Proanthocyanidins; Quercetin; Resveratrol; Stilbenes; Sulfides; Tea; Triterpenes; Xanthophylls

2015
Antioxidant potential of spices and their active constituents.
    Critical reviews in food science and nutrition, 2014, Volume: 54, Issue:3

    Excessive free radical generation overbalancing the rate of their removal leads to oxidative stress. Oxidative stress has been implicated in the etiology of cardiovascular disease, inflammatory diseases, cancer, and other chronic diseases. Antioxidants are compounds that hinder the oxidative processes and thereby delay or suppress oxidative stress. There is a growing interest in natural antioxidants found in plants. Herbs and spices are most important targets to search for natural antioxidants from the point of view of safety. A wide variety of phenolic compounds present in spices that are extensively used as food adjuncts possess potent antioxidant, anti-inflammatory, antimutagenic, and cancer preventive activities. This paper reviews a host of spice compounds as exogenous antioxidants that are experimentally evidenced to control cellular oxidative stress, both in vitro and in vivo, and their beneficial role in preventing or ameliorating oxidative-stress-mediated diseases, from atherosclerosis to diabetes to cataract to cancer. The antioxidative effects of turmeric/curcumin, clove/eugenol, red pepper/capsaicin, black pepper/piperine, ginger/gingerol, garlic, onion, and fenugreek, which have been extensively studied and evidenced as potential antioxidants, are specifically reviewed in this treatise.

    Topics: Alkaloids; Anti-Inflammatory Agents; Antimutagenic Agents; Antioxidants; Benzodioxoles; Capsaicin; Cardiotonic Agents; Catechols; Curcumin; Eugenol; Fatty Alcohols; Garlic; Humans; Neoplasms; Onions; Oxidative Stress; Phenols; Piperidines; Polyunsaturated Alkamides; Spices; Trigonella

2014
Inhibitors of microglial neurotoxicity: focus on natural products.
    Molecules (Basel, Switzerland), 2011, Jan-25, Volume: 16, Issue:2

    Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Benzyl Alcohols; Biological Products; Biphenyl Compounds; Catechin; Catechols; Curcumin; Encephalitis; Fatty Alcohols; Ginsenosides; Glucosides; Microglia; Molecular Structure; Nerve Degeneration; Neuroprotective Agents; Phenyl Ethers; Plant Extracts; Resveratrol; Stilbenes

2011
Nutraceuticals and cancer management.
    Frontiers in bioscience : a journal and virtual library, 2005, May-01, Volume: 10

    The use of complementary and alternative medicine (CAM) is increasing rapidly in developed countries, which is already in use as traditional medicines in various Asian countries. The Indian system of medicine, named as Ayurveda has an edge in this field. Many plant products are in use as herbal medicine, as food supplement or as spices, in every day cooking. Some of them have been well studied in various experimental models of cancer, both in vivo and in vitro models. They have shown significant inhibition of cell proliferation. Some of them are in the phase of clinical trial or already available as food supplement. Cancer patients are specially exploring the use of CAM, because of the high risk of mortality and long-term morbidity associated with surgical procedures of cancer management and high side effects of chemotherapy. This paper reviews different class of phytomedicines, used in Indian system of medicine, and also in Europe, which have shown positive results in preventing cancer progression. It also covers the role of vitamins, minerals, dietary fat in relation to cancer control. The mechanisms of action of these phytomolecules have also been discussed.

    Topics: Antioxidants; Capsaicin; Carotenoids; Catechin; Catechols; Complementary Therapies; Curcumin; Fatty Alcohols; Flavones; Genistein; Herbal Medicine; Humans; Isoflavones; Lycopene; Minerals; Neoplasms; Phytoestrogens; Phytotherapy; Plant Preparations; Vitamins

2005
Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2002, Volume: 40, Issue:8

    A wide variety of phenolic substances derived from spice possess potent antimutagenic and anticarcinogenic activities. Examples are curcumin, a yellow colouring agent, contained in turmeric (Curcuma longa L., Zingiberaceae), [6]-gingerol, a pungent ingredient present in ginger (Zingiber officinale Roscoe, Zingiberaceae) and capsaicin, a principal pungent principle of hot chili pepper (Capsicum annuum L, Solanaceae). The chemopreventive effects exerted by these phytochemicals are often associated with their antioxidative and anti-inflammatory activities. Cyclo-oxygenase-2 (COX-2) has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. Recent studies have shown that COX-2 is regulated by the eukaryotic transcription factor NF-kappaB. This short review summarizes the molecular mechanisms underlying chemopreventive effects of the aforementioned spice ingredients in terms of their effects on intracellular signaling cascades, particularly those involving NF-kappaB and mitogen-activated protein kinases.

    Topics: Animals; Anti-Inflammatory Agents; Anticarcinogenic Agents; Antimutagenic Agents; Antioxidants; Capsaicin; Catechols; Cell Transformation, Neoplastic; Curcumin; Cyclooxygenase 2; Fatty Alcohols; Humans; Isoenzymes; Membrane Proteins; Mutagens; NF-kappa B; Prostaglandin-Endoperoxide Synthases; Spices

2002
Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances.
    Mutation research, 1999, Jul-16, Volume: 428, Issue:1-2

    Recently, considerable attention has been focused on identifying naturally occurring chemopreventive substances capable of inhibiting, retarding, or reversing the multi-stage carcinogenesis. A wide array of phenolic substances, particularly those present in dietary and medicinal plants, have been reported to possess substantial anticarcinogenic and antimutagenic activities. The majority of these naturally occurring phenolics retain antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activity. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a pungent ingredient of hot chili pepper, protects against experimentally-induced mutagenesis and tumorigenesis. It also induces apoptosis in various immortalized or malignant cell lines. Plants of ginger family (Zingiberaceae) have been frequently and widely used as spices and also, in traditional oriental medicine. Curcumin, a yellow ingredient from turmeric (Curcuma longa L., Zingiberaceae), has been extensively investigated for its cancer chemopreventive potential. Yakuchinone A [1-(4'-hydroxy-3'-methoxyphenyl)-7-phenyl-3-heptanone] and yakuchinone B [1-(4'-hydroxy-3'-methoxyphenyl)-7-phenylhept-1-en-3-one] present in Alpinia oxyphylla Miquel (Zingiberaceae) have inhibitory effects on phorbol ester-induced inflammation and skin carcinogenesis in mice, and oxidative stress in vitro. These diarylheptanoids suppress phorbol ester-induced activation of ornithine decarboxylase and production of tumor necrosis factor-alpha or interleukin-1alpha and their mRNA expression. They also nullified the phorbol ester-stimulated induction of activator protein 1 (AP-1) in cultured human promyelocytic leukemia (HL-60) cells. In addition, both yakuchinone A and B induced apoptotic death in HL-60 cells. Ginger (Zingiber officinale Roscoe, Zingiberaceae) contains such pungent ingredients as [6]-gingerol and [6]-paradol, which also have anti-tumor promotional and antiproliferative effects. Resveratrol (3, 5,4'-trihydroxy-trans-stilbene), a phytoalexin found in grapes and other dietary and medicinal plants, and (-)-epigallocatechin gallate, a major antioxidative green tea polyphenol, exert striking inhibitory effects on diverse cellular events associated with multi-stage carcinogenesis. In addition, these compounds have ability to suppress proliferation of human cancer cells via induction of apoptosis.

    Topics: Animals; Capsaicin; Catechin; Catechols; Curcumin; Diet; Fatty Alcohols; Humans; Mice; Neoplasms; Neoplasms, Experimental; Phenols; Plants, Edible; Plants, Medicinal; Resveratrol; Stilbenes

1999

Other Studies

19 other study(ies) available for curcumin and gingerol

ArticleYear
Is the Triggering of PD-L1 Dimerization a Potential Mechanism for Food-Derived Small Molecules in Cancer Immunotherapy? A Study by Molecular Dynamics.
    International journal of molecular sciences, 2023, Jan-11, Volume: 24, Issue:2

    Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway. To clarify the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and molecular dynamics simulations were performed. The results evidenced that these compounds could inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. Binding free energy calculations showed that capsaicin, zucapsaicin, 6-gingerol and curcumin have strong binding ability with the PD-L1 dimer, where the affinities of them follow the trend of zucapsaicin > capsaicin > 6-gingerol ≈ curcumin. Analysis by residue energy decomposition, contact numbers and nonbonded interactions revealed that these compounds have a tight interaction with the C-sheet, F-sheet and G-sheet fragments of the PD-L1 dimer, which were also involved in the interactions with PD-1. Moreover, non-polar interactions between these compounds and the key residues Ile54, Tyr56, Met115 and Ala121 play a key role in stabilizing the protein−ligand complexes in solution, in which the 4′-hydroxy-3′-methoxyphenyl group and the carbonyl group of zucapsaicin, capsaicin, 6-ginger and curcumin were significant for the complexation of small molecules with the PD-L1 dimer. The conformational variations of these complexes were further analyzed by free energy landscape (FEL) and principal component analysis (PCA) and showed that these small molecules could make the structure of dimers more stable. This work provides a mechanism insight for food-derived small molecules blocking the PD-1/PD-L1 pathway via directly targeting the PD-L1 dimerization and offers theoretical guidance to discover more effective small molecular drugs in cancer immunotherapy.

    Topics: B7-H1 Antigen; Capsaicin; Curcumin; Dimerization; Humans; Immunotherapy; Molecular Docking Simulation; Molecular Dynamics Simulation; Neoplasms; Programmed Cell Death 1 Receptor

2023
Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies.
    Scientific reports, 2023, 05-27, Volume: 13, Issue:1

    Cyclooxygenase (COX) and Lipoxygenase (LOX) are essential enzymes for arachidonic acid (AA) to eicosanoids conversion. These AA-derived eicosanoids are essential for initiating immunological responses, causing inflammation, and resolving inflammation. Dual COX/5-LOX inhibitors are believed to be promising novel anti-inflammatory agents. They inhibit the synthesis of prostaglandins (PGs) and leukotrienes (LTs), but have no effect on lipoxin formation. This mechanism of combined inhibition circumvents certain limitations for selective COX-2 inhibitors and spares the gastrointestinal mucosa. Natural products, i.e. spice chemicals and herbs, offer an excellent opportunity for drug discovery. They have proven anti-inflammatory properties. However, the potential of a molecule to be a lead/ drug candidate can be much more enhanced if it has the property of inhibition in a dual mechanism. Synergistic activity is always a better option than the molecule's normal biological activity. Herein, we have explored the dual COX/5-LOX inhibition property of the three major potent phytoconsituents (curcumin, capsaicin, and gingerol) from Indian spices using in silico tools and biophysical techniques in a quest to identify their probable inhibitory role as anti-inflammatory agents. Results revealed the dual COX/5-LOX inhibitory potential of curcumin. Gingerol and capsaicin also revealed favorable results as dual COX/5-LOX inhibitors. Our results are substantiated by target similarity studies, molecular docking, molecular dynamics, energy calculations, DFT, and QSAR studies. In experimental inhibitory (in vitro) studies, curcumin exhibited the best dual inhibitory activities against COX-1/2 and 5-LOX enzymes. Capsaicin and gingerol also showed inhibitory potential against both COX and LOX enzymes. In view of the anti-inflammatory potential these spice chemicals, this research could pave the way for more scientific exploration in this area for drug discovery.

    Topics: Anti-Inflammatory Agents; Arachidonate 5-Lipoxygenase; Capsaicin; Curcumin; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Humans; Inflammation; Lipoxygenase; Lipoxygenase Inhibitors; Molecular Docking Simulation; Spices

2023
Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases.
    Journal of biomolecular structure & dynamics, 2022, Volume: 40, Issue:1

    Medicinal plants have been known to provide the essential raw material for the majority of antiviral drugs. This study demonstrated the putative inhibitory potential of curcumin, allicin, and gingerol towards cathepsin K, COVID-19 main protease, and SARS-CoV 3 C-like protease. The pharmacokinetic properties were predicted through the SwissADME server while the corresponding binding affinity of the selected phytocompounds towards the proteins was computed using PyRx-Python Prescription 0.8 and the binding free energy were computed based on conventional molecular dynamics using LARMD server. The ADMET properties revealed all the drugs possess drug-like properties. Curcumin has the highest binding affinities with all the selected proteases while allicin has the lowest binding affinities towards the proteases. Moreover, it was observed that curcumin exhibited the highest binding free energy of -17.90 ± 0.23,  -18.21 ± 0.25, and -9.67 ± 0.08 kcal/mol for Cathepsin K, COVID-19 main protease, and SARS-CoV 3 C-like protease, respectively. Based on the activities of the phytocompounds against coronavirus target proteases involved in the viral entry as evident from the results, the study, therefore, suggests that these phytocompounds could be valuable for the development of drugs useful for the prevention of coronavirus entry and replication.Communicated by Ramaswamy H. Sarma.

    Topics: Catechols; Cathepsin K; Coronavirus 3C Proteases; COVID-19; Curcumin; Disulfides; Fatty Alcohols; Humans; Molecular Docking Simulation; SARS-CoV-2; Sulfinic Acids

2022
Exemplifying the next generation of antibiotic susceptibility intensifiers of phytochemicals by LasR-mediated quorum sensing inhibition.
    Scientific reports, 2021, 11-17, Volume: 11, Issue:1

    There persists a constant threat from multidrug resistance being acquired by all human pathogens that challenges the well-being of humans. This phenomenon is predominantly led by Pseudomonas aeruginosa which is already resistant to the current generations of antibiotic by altering its metabolic pathways to survive. Specifically for this microbe the phenomenon of quorum sensing (QS) plays a crucial role in acquiring virulence and pathogenicity. QS is simply the cross talk between the bacterial community driven by signals that bind to receptors, enabling the entire bacterial microcosm to function as a single unit which has led to control P. aeruginosa cumbersome even in presence of antibiotics. Inhibition of QS can, therefore, be of a significant importance to curb such virulent and pathogenic strains of P. aeruginosa. Natural compounds are well known for their antimicrobial properties, of which, information on their mode of action is scarce. There can be many antimicrobial phytochemicals that act by hindering QS-pathways. The rationale of the current study is to identify such natural compounds that can inhibit QS in P. aeruginosa driven by LasR, PhzR, and RhlR dependent pathways. To achieve this rationale, in silico studies were first performed to identify such natural compounds which were then validated by in vitro experiments. Gingerol and Curcumin were identified as QS-antagonists (QSA) which could further suppress the production of biofilm, EPS, pyocyanin, and rhamnolipid along with improving the susceptibility to antibiotics.

    Topics: Anti-Bacterial Agents; Bacterial Proteins; Biofilms; Catechols; Curcumin; Fatty Alcohols; Glycolipids; Microbial Sensitivity Tests; Molecular Dynamics Simulation; Phytochemicals; Pseudomonas aeruginosa; Pseudomonas Infections; Pyocyanine; Quorum Sensing; Signal Transduction; Trans-Activators; Virulence

2021
Insight into Inhibitory Mechanism of PDE4D by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations.
    Biomolecules, 2021, 03-23, Volume: 11, Issue:3

    Phosphodiesterase 4 (PDE4), mainly present in immune, epithelial, and brain cells, represents a family of key enzymes for the degradation of cyclic adenosine monophosphate (cAMP), which modulates inflammatory response. In recent years, the inhibition of PDE4 has been proven to be an effective therapeutic strategy for the treatment of neurological disorders. PDE4D constitutes a high-interest therapeutic target primarily for the treatment of Alzheimer's disease, as it is highly involved in neuroinflammation, learning ability, and memory dysfunctions. In the present study, a thorough computational investigation consisting of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations based on the linear response approximation (LRA) method was performed to study dietary polyphenols as potential PDE4D inhibitors. The obtained results revealed that curcumin, 6-gingerol, capsaicin, and resveratrol represent potential PDE4D inhibitors; however, the predicted binding free energies of 6-gingerol, capsaicin, and resveratrol were less negative than in the case of curcumin, which exhibited the highest inhibitory potency in comparison with a positive control rolipram. Our results also revealed that the electrostatic component through hydrogen bonding represents the main driving force for the binding and inhibitory activity of curcumin, 6-gingerol, and resveratrol, while the van der Waals component through shape complementarity plays the most important role in capsaicin's inhibitory activity. All investigated compounds form hydrophobic interactions with residues Gln376 and Asn602 as well as hydrogen bonds with nearby residues Asp438, Met439, and Ser440. The binding mode of the studied natural compounds is consequently very similar; however, it significantly differs from the binding of known PDE4 inhibitors. The uncovered molecular inhibitory mechanisms of four investigated natural polyphenols, curcumin, 6-gingerol, capsaicin, and resveratrol, form the basis for the design of novel PDE4D inhibitors for the treatment of Alzheimer's disease with a potentially wider therapeutic window and fewer adverse side effects.

    Topics: Alzheimer Disease; Capsaicin; Catechols; Curcumin; Cyclic Nucleotide Phosphodiesterases, Type 4; Fatty Alcohols; Humans; Molecular Dynamics Simulation; Polyphenols; Resveratrol

2021
Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study.
    Journal of receptor and signal transduction research, 2020, Volume: 40, Issue:4

    Toll-like receptor 4 (TLR4) pathway is one of the major pathways that mediate the inflammation in human body. There are different anti-inflammatory drugs available in the market which specifically act on different signaling proteins of TLR4 pathway but they do have few side effects and other limitations for intended use in human body. In this study, Curcumin and its different analogs have been analyzed as the inhibitors of signaling proteins, i.e. Cycloxygenase-2 (COX-2), inhibitor of kappaβ kinase (IKK) and TANK binding kinase-1 (TBK-1) of TLR4 pathway using different computational tools. Initially, three compounds were selected for respective target based on free binding energy among which different compounds were reported to have better binding affinity than commercially available drug (control). Upon continuous computational exploration with induced fit docking (IFD), 6-Gingerol, Yakuchinone A and Yakuchinone B were identified as the best inhibitors of COX-2, IKK, and TBK-1 respectively. Then their drug-like potentialities were analyzed in different experiments where they were also predicted to perform well. Hopefully, this study will uphold the efforts of researchers to identify anti-inflammatory drugs from natural sources.

    Topics: Catechols; Computational Chemistry; Curcumin; Cyclooxygenase 2; Diarylheptanoids; Fatty Alcohols; Guaiacol; Humans; I-kappa B Kinase; Inflammation; Lipopolysaccharides; NF-kappa B; Pharmaceutical Preparations; Protein Serine-Threonine Kinases; Signal Transduction; Toll-Like Receptor 4

2020
Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin.
    Food microbiology, 2020, Volume: 90

    Human noroviruses (HNoV) and hepatitis A virus (HAV) are predominantly linked to foodborne outbreaks worldwide. As cell-culture systems to propagate HNoV in laboratories are not easily available, Tulane virus (TV) is used as a cultivable HNoV surrogate to determine inactivation. Heat-sensitization of HAV and TV by "generally recognized as safe'' (GRAS) substances can potentially reduce their time-temperature inactivation parameters during processing to ensure food safety. Curcumin, gingerol (from ginger), and grape seed extract (GSE) reportedly have anti-inflammatory, immune-modulating and antiviral properties. The objective of this study was to determine and compare the D-values and z-values of HAV and TV at 52-68 °C with or without curcumin (0.015 mg/ml), gingerol (0.1 mg/ml), or GSE (1 mg/ml) in 2-ml glass vials. HAV at ~7 log PFU/ml and TV at ~6 log PFU/ml were diluted in phosphate buffered saline (PBS) and added to two sets of six 2-mL sterile glass vials. One set served as the control and the second set had the three extracts individually added for thermal treatments in a circulating water bath for 0-10 min. The D-values for TV in PBS ranged from 4.55 ± 0.28 to 1.08 ± 0.16 min, and for HAV in PBS ranged from to 9.21 ± 0.24 to 0.67 ± 0.19 min at 52-68 °C. Decreased D-values (52-58 °C) for TV with curcumin ranging from 4.32 ± 0.25 to 0.62 ± 0.17 min, gingerol from 4.09 ± 0.18 to 0.72 ± 0.09 min and GSE from 3.82 ± 0.18 to 0.80 ± 0.07 min, with similar trends for HAV were observed. The linear model showed significant differences (p < 0.05) between the D-values of HAV and TV with and without plant extracts for most tested temperatures. This suggests that GRAS substances can potentially lower temperature and time regimens needed to inactivate HAV and TV.

    Topics: Antiviral Agents; Catechols; Curcumin; Fatty Alcohols; Food Microbiology; Grape Seed Extract; Hepatitis A virus; Hot Temperature; Norovirus; Virus Inactivation

2020
Valorisation of Ginger and Turmeric Peels as Source of Natural Antioxidants.
    Plant foods for human nutrition (Dordrecht, Netherlands), 2019, Volume: 74, Issue:3

    The antioxidant activity of ginger and turmeric powders derived from freeze-dried rhizomes and peels as well as commercial spices has been evaluated by two spectrophotometric assays based on electron transfer such as DPPH and FRAP. The phenolic characterization has been also carried out by detecting total polyphenols through Folin-Ciocalteu method and HPLC analysing 6-gingerol and curcumin. Ginger and turmeric peels showed greater antioxidant activity than commercial powders because of their higher phenolic yields. Hence, ginger and turmeric peels can be considered a rich source of phytochemicals which contribute to the antioxidant effects of these agro-food wastes.

    Topics: Antioxidants; Catechols; Curcuma; Fatty Alcohols; Phenols; Phytochemicals; Polyphenols; Rhizome; Spices; Zingiber officinale

2019
pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2017, Volume: 117

    Developing a drug carrier system which could perform targeted and controlled release over a period of time is utmost concern in the pharmaceutical industry. This is more relevant when designing drug carriers for poorly water soluble drug molecules such as curcumin and 6-gingerol. Development of a drug carrier system which could overcome these limitations and perform controlled and targeted drug delivery is beneficial. This study describes a promising approach for the design of novel pH sensitive sodium alginate, hydroxyapatite bilayer coated iron oxide nanoparticle composite (IONP/HAp-NaAlg) via the co-precipitation approach. This system consists of a magnetic core for targeting and a NaAlg/HAp coating on the surface to accommodate the drug molecules. The nanocomposite was characterized using FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The loading efficiency and loading capacity of curcumin and 6-gingerol were examined. In vitro drug releasing behavior of curcumin and 6-gingerol was studied at pH 7.4 and pH 5.3 over a period of seven days at 37°C. The mechanism of drug release from the nanocomposite of each situation was studied using kinetic models and the results implied that, the release is typically via diffusion and a higher release was observed at pH 5.3. This bilayer coated system can be recognized as a potential drug delivery system for the purpose of curcumin and 6-gingerol release in targeted and controlled manner to treat diseases such as cancer.

    Topics: Alginates; Antineoplastic Agents; Catechols; Curcumin; Delayed-Action Preparations; Drug Carriers; Drug Liberation; Durapatite; Fatty Alcohols; Ferric Compounds; Glucuronic Acid; Hexuronic Acids; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Metal Nanoparticles; Polyethylene Glycols; X-Ray Diffraction

2017
Methylglyoxal and Advanced Glycation End products: Insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds.
    Scientific reports, 2017, 07-19, Volume: 7, Issue:1

    Methylglyoxal (MG) is a reactive dicarbonyl intermediate and a precursor of advanced glycation end products (AGEs). The authors investigated the role played by AGEs in muscle myopathy and the amelioration of its effects by curcumin and gingerol. In addition to producing phenotypical changes, MG increased oxidative stress and reduced myotube formation in C2C12 cells. RAGE (receptor for AGEs) expression was up-regulated and MYOD and myogenin (MYOG) expressions were concomitantly down-regulated in MG-treated cells. Interestingly, AGE levels were higher in plasma (~32 fold) and muscle (~26 fold) of diabetic mice than in control mice. RAGE knock-down (RAGE

    Topics: Animals; Biological Products; Catechols; Cell Differentiation; Cell Line; Computer Simulation; Curcumin; Diabetes Mellitus, Experimental; Fatty Alcohols; Gene Expression Regulation; Gene Knockdown Techniques; Glycation End Products, Advanced; Mice, Inbred C57BL; Muscle Development; Myostatin; Pyruvaldehyde; Receptor for Advanced Glycation End Products; RNA, Messenger

2017
Revealing the effect of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and β-catenin pathway in A549 cell line.
    Chemico-biological interactions, 2016, Oct-25, Volume: 258

    In our study, anticancer effects of 6-gingerol, 6-shogaol from ginger and curcumin from turmeric were investigated and the results were compared with each other. We aimed to reveal their effects on microsomal prostaglandine E2 synthase 1 (mPGES-1) which is related with cancer progression and inflammation as well as β-catenin and glycogen synthase kinase 3β (GSK-3β) that are the main components of Wnt/GSK3 pathway. As it is known activation of GSK-3β and high levels of mPGES-1 pathway leads to cell proliferation and aggravates cancer progression. Therefore both of them are potential targets for cancer therapy. 6-shogaol and 6-gingerol' s effect on this pathway is not known very well up to now while curcumin that is known as an mPGES-1 inhibitor has anticancer properties via this pathway and many other pathways. Besides being in Zingiberaceae family, ginger's 6-gingerol and 6-shogaol have a molecular similarity with turmeric's curcumin. In our study we investigated their effects using a popular non small lung cancer cell line named A549 which expresses mPGES-1 and has active GSK3β pathway. IL-1β was used for inducing mPGES-1 and enabling the cancer characteristics such as cell proliferation. So compounds that inactivates or decreases the level of these components might be potential anticancer agents.. A549 cells were incubated with interleukin 1β (IL-1β) for 24 h in order to maintain mPGES-1 enzyme induction. Experiments were performed both on IL-1β and non-IL-1β group. Real time cell analysis was performed to determine the cytotoxicity. Samples for western blotting and RT-PCR were collected after 24 h incubation with compounds to determine the amount of mPGES-1, GSK-3β, p-GSK-3β, β-catenin protein and mRNA. PGE2 which is the end product of mPGES-1 was measured by using ELISA kit.. As a result of cell profile assay, cells exposed to IL-1β proliferate faster than non-IL-1β ones. This shows that induced mPGES-1 might play a role through GSK3β pathway and 24 h IC50 value of 6-shogaol is 62 μM. IL-1β increased protein and mRNA levels of mPGES-1, p-GSK-3β, β-catenin and GSK-3β in control group. Effects of curcumin and 6-shogaol on these parameters were against IL-1β's effect while 6-gingerol was not effective at all. Furthermore, 6-shogaol and curcumin might be effective on GSK3β pathway via lowering PGE2 levels.. We saw that 6-shogaol is as effective as curcumin on this pathway and our study shows that 6-shogaol might show its anticancer properties via mPGES-1 and GSK3β pathway. May be these results might used for designing in vivo studies in future.

    Topics: A549 Cells; beta Catenin; Blotting, Western; Catechols; Cell Survival; Curcumin; Dinoprostone; Fatty Alcohols; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3 beta; Humans; Interleukin-1beta; Models, Biological; Prostaglandin-E Synthases; RNA, Messenger; Signal Transduction

2016
Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids.
    BMC plant biology, 2013, Feb-15, Volume: 13

    Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding gene expression in the rhizomes of ginger and turmeric.. In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different ginger and turmeric tissues. Comparisons to publicly available sorghum rhizome ESTs revealed a total of 777 gene transcripts expressed in ginger/turmeric and sorghum rhizomes but apparently absent from other tissues. The list of rhizome-specific transcripts was enriched for genes associated with regulation of tissue growth, development, and transcription. In particular, transcripts for ethylene response factors and AUX/IAA proteins appeared to accumulate in patterns mirroring results from previous studies regarding rhizome growth responses to exogenous applications of auxin and ethylene. Thus, these genes may play important roles in defining rhizome growth and development. Additional associations were made for ginger and turmeric rhizome-enriched MADS box transcription factors, their putative rhizome-enriched homologs in sorghum, and rhizomatous QTLs in rice. Additionally, analysis of both primary and specialized metabolism genes indicates that ginger and turmeric rhizomes are primarily devoted to the utilization of leaf supplied sucrose for the production and/or storage of specialized metabolites associated with the phenylpropanoid pathway and putative type III polyketide synthase gene products. This finding reinforces earlier hypotheses predicting roles of this enzyme class in the production of curcuminoids and gingerols.. A significant set of genes were found to be exclusively or preferentially expressed in the rhizome of ginger and turmeric. Specific transcription factors and other regulatory genes were found that were common to the two species and that are excellent candidates for involvement in rhizome growth, differentiation and development. Large classes of enzymes involved in specialized metabolism were also found to have apparent tissue-specific expression, suggesting that gene expression itself may play an important role in regulating metabolite production in these plants.

    Topics: Catechols; Curcuma; Expressed Sequence Tags; Fatty Alcohols; Terpenes; Zingiber officinale

2013
Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger.
    Fitoterapia, 2012, Volume: 83, Issue:3

    Twenty-nine phenolic compounds were isolated from the root bark of fresh (Yunnan) ginger and their structures fully characterized. Selected compounds were divided into structural categories and twelve compounds subjected to in-vitro assays including DPPH radical scavenging, xanthine-oxidase inhibition, monoamine oxidase inhibition, rat-brain homogenate lipid peroxidation, and rat pheochromocytoma PC12 cell and primary liver cell viability to determine their antioxidant and cytoprotective properties. Isolated compounds were also tested against nine human tumor cell lines to characterize anticancer potency. Several diarylheptanoids and epoxidic diarylheptanoids were effective DPPH radical scavengers and moderately effective at inhibiting xanthine oxidase. An enone-dione analog of 6-shogaol (compound 2) was isolated and identified to be most effective at protecting PC12 cells from H₂O₂-induced damage. Almost all tested compounds inhibited lipid peroxidation. Three compounds, 6-shogaol, 10-gingerol and an enone-diarylheptanoid analog of curcumin (compound 6) were identified to be cytotoxic in cell lines tested, with KB and HL60 cells most susceptible to 6-shogaol and the curcumin analog with IC₅₀<10 μM. QSAR analysis revealed cytotoxicity was related to compound lipophilicity and chemical reactivity. In conclusion, we observed distinct compounds in fresh ginger to have biological activities relevant in diseases associated with reactive oxygen species.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Antioxidants; Biphenyl Compounds; Catechols; Curcumin; Cytoprotection; Fatty Alcohols; HL-60 Cells; Humans; Hydrogen Peroxide; Hydrophobic and Hydrophilic Interactions; KB Cells; Lipid Peroxidation; Neoplasms; PC12 Cells; Phenols; Phytotherapy; Picrates; Plant Bark; Plant Extracts; Plant Roots; Rats; Xanthine Oxidase; Zingiber officinale

2012
6-Shogaol is more effective than 6-gingerol and curcumin in inhibiting 12-O-tetradecanoylphorbol 13-acetate-induced tumor promotion in mice.
    Molecular nutrition & food research, 2010, Volume: 54, Issue:9

    We previously reported that 6-shogaol strongly suppressed lipopolysaccharide-induced overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in murine macrophages. In this study, we further compared curcumin, 6-gingerol, and 6-shogaol's molecular mechanism of action and their anti-tumor properties. We demonstrate that topical application of 6-shogaol more effectively inhibited 12-O-tetradecanoylphorbol 13-acetate (TPA)-stimulated transcription of iNOS and COX-2 mRNA expression in mouse skin than curcumin and 6-gingerol. Pretreatment with 6-shogaol has resulted in the reduction of TPA-induced nuclear translocation of the nuclear factor-kappaB subunits. 6-Shogaol also reduced TPA-induced phosphorylation of IkappaBalpha and p65, and caused subsequent degradation of IkappaBalpha. Moreover, 6-shogaol markedly suppressed TPA-induced activation of extracellular signal-regulate kinase1/2, p38 mitogen-activated protein kinase, JNK1/2, and phosphatidylinositol 3-kinase/Akt, which are upstream of nuclear factor-kappaB and AP-1. Furthermore, 6-shogaol significantly inhibited 7,12-dimethylbenz[a]anthracene/TPA-induced skin tumor formation measured by the tumor multiplicity of papillomas at 20 wk. Presented data reveal for the first time that 6-shogaol is an effective anti-tumor agent that functions by down-regulating inflammatory iNOS and COX-2 gene expression in mouse skin. It is suggested that 6-shogaol is a novel functional agent capable of preventing inflammation-associated tumorigenesis.

    Topics: Administration, Topical; Animals; Anti-Inflammatory Agents, Non-Steroidal; Anticarcinogenic Agents; Catechols; Curcumin; Cyclooxygenase 2; Dose-Response Relationship, Drug; Fatty Alcohols; Female; Gene Expression Regulation, Enzymologic; Mice; Mice, Inbred ICR; Nitric Oxide Synthase Type II; Papilloma; RNA, Messenger; Signal Transduction; Skin; Skin Neoplasms; Tumor Burden

2010
In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa.
    The Journal of biological chemistry, 2007, Dec-28, Volume: 282, Issue:52

    Curcuminoids, major components of the spice turmeric, are used as a traditional Asian medicine and a food additive. Curcumin, a representative curcuminoid, has received a great deal of attention because of its anti-inflammatory, anticarcinogenic, and antitumor activities. Here we report a novel type III polyketide synthase named curcuminoid synthase from Oryza sativa, which synthesizes bisdemethoxycurcumin via a unique mechanism from two 4-coumaroyl-CoAs and one malonyl-CoA. The reaction begins with the thioesterification of the thiol moiety of Cys-174 by a starter molecule, 4-coumaroyl-CoA. Decarboxylative condensation of the first extender substrate, malonyl-CoA, onto the thioester of 4-coumarate results in the formation of a diketide-CoA intermediate. Subsequent hydrolysis of the intermediate yields a beta-keto acid, which in turn acts as the second extender substrate. The beta-keto acid is then joined to the Cys-174-bound 4-coumarate by decarboxylative condensation to form bisdemethoxycurcumin. This reaction violates the traditional head-to-tail model of polyketide assembly; the growing diketide intermediate is hydrolyzed to a beta-keto acid that subsequently serves as the second extender to form curcuminoids. Curcuminoid synthase appears to be capable of the synthesis of not only diarylheptanoids but also gingerol analogues, because it synthesized cinnamoyl(hexanoyl)methane, a putative intermediate of gingerol, from cinnamoyl-CoA and 3-oxo-octanoic acid.

    Topics: Acyltransferases; Biochemistry; Caprylates; Catechols; Chromatography, Thin Layer; Curcumin; Cysteine; Esters; Fatty Alcohols; Hydrogen-Ion Concentration; Hydrolysis; In Vitro Techniques; Ligases; Models, Chemical; Mutagenesis, Site-Directed; Oryza; Substrate Specificity

2007
Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases.
    Phytochemistry, 2006, Volume: 67, Issue:18

    Members of the Zingiberaceae such as turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.) accumulate at high levels in their rhizomes important pharmacologically active metabolites that appear to be derived from the phenylpropanoid pathway. In ginger, these compounds are the gingerols; in turmeric these are the curcuminoids. Despite their importance, little is known about the biosynthesis of these compounds. This investigation describes the identification of enzymes in the biosynthetic pathway leading to the production of these bioactive natural products. Assays for enzymes in the phenylpropanoid pathway identified the corresponding enzyme activities in protein crude extracts from leaf, shoot and rhizome tissues from ginger and turmeric. These enzymes included phenylalanine ammonia lyase, polyketide synthases, p-coumaroyl shikimate transferase, p-coumaroyl quinate transferase, caffeic acid O-methyltransferase, and caffeoyl-CoA O-methyltransferase, which were evaluated because of their potential roles in controlling production of certain classes of gingerols and curcuminoids. All crude extracts possessed activity for all of these enzymes, with the exception of polyketide synthases. The results of polyketide synthase assays showed detectable curcuminoid synthase activity in the extracts from turmeric with the highest activity found in extracts from leaves. However, no gingerol synthase activity could be identified. This result was explained by the identification of thioesterase activities that cleaved phenylpropanoid pathway CoA esters, and which were found to be present at high levels in all tissues, especially in ginger tissues. These activities may shunt phenylpropanoid pathway intermediates away from the production of curcuminoids and gingerols, thereby potentially playing a regulatory role in the biosynthesis of these compounds.

    Topics: Catechols; Curcuma; Curcumin; Esterases; Fatty Alcohols; Ligases; Methyltransferases; Molecular Structure; Phenylalanine Ammonia-Lyase; Zingiber officinale

2006
Effects of dietary chemopreventive phytochemicals on P-glycoprotein function.
    Biochemical and biophysical research communications, 2005, Feb-18, Volume: 327, Issue:3

    The effects of dietary phytochemicals on P-glycoprotein function were investigated using human multidrug-resistant carcinoma KB-C2 cells and the fluorescent P-glycoprotein substrates daunorubicin and rhodamine 123. The effects of natural chemopreventive compounds, capsaicin found in chilli peppers, curcumin in turmeric, [6]-gingerol in ginger, resveratrol in grapes, sulforaphane in broccoli, 6-methylsulfinyl hexyl isothiocyanate (6-HITC) in Japanese horseradish wasabi, indole-3-carbinol (I3C) in cabbage, and diallyl sulfide and diallyl trisulfide in garlic, were examined. The accumulation of daunorubicin in KB-C2 cells increased in the presence of capsaicin, curcumin, [6]-gingerol, and resveratrol in a concentration-dependent manner. The accumulation of rhodamine 123 in KB-C2 cells was also increased, and the efflux of rhodamine 123 from KB-C2 cells was decreased by these phytochemicals. Sulforaphane, 6-HITC, I3C, and diallyl sulfide and diallyl trisulfide had no effect. These results suggest that dietary phytochemicals, such as capsaicin, curcumin, [6]-gingerol, and resveratrol, have inhibitory effects on P-glycoprotein and potencies to cause drug-food interactions.

    Topics: Antineoplastic Agents, Phytogenic; ATP Binding Cassette Transporter, Subfamily B, Member 1; Capsaicin; Catechols; Chemoprevention; Curcumin; Diet; Dose-Response Relationship, Drug; Fatty Alcohols; Humans; KB Cells; Plant Extracts; Resveratrol; Rhodamine 123; Stilbenes; Vinblastine

2005
Dietary ginger constituents, galanals A and B, are potent apoptosis inducers in Human T lymphoma Jurkat cells.
    Cancer letters, 2003, Sep-25, Volume: 199, Issue:2

    The effects of the constituents isolated from ginger species including curcumin, 6-gingerol and labdane-type diterpene compounds on cell proliferation and the induction of apoptosis in the cultured human T lymphoma Jurkat cells were studied. Among the tested compounds, galanals A and B, isolated from the flower buds of a Japanese ginger, myoga (Zingiber mioga Roscoe), showed the most potent cytotoxic effect. Exposure of Jurkat human T-cell leukemia cells to galanals resulted in the induction of apoptotic cell death characterized by DNA fragmentation and caspase-3 activation. The mitochondrial damage pathway was suggested to be involved in galanal-induced apoptosis because the treatment of cells with galanals induced mitochondrial transmembrane potential (DeltaPsim) alteration and cytochrome c release. The anti-apoptotic Bcl-2 protein was downregulated by the galanal treatment together with enhancement of the Bax expression. In conclusion, the results from this study provide biological evidence that ginger-specific constituents other than curcuminoids are potential anticancer agents.

    Topics: Apoptosis; bcl-2-Associated X Protein; Blotting, Western; Caspase 3; Caspases; Catechols; Curcumin; Cytochromes c; Diet; Diterpenes; Enzyme Activation; Fatty Alcohols; Humans; Jurkat Cells; Membrane Potentials; Mitochondria; Mutagens; Naphthalenes; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Spiro Compounds; Zingiber officinale

2003
Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice.
    Cancer letters, 1998, Jul-17, Volume: 129, Issue:2

    A wide array of phytochemicals have been shown to possess potential cancer chemopreventive properties. Ginger contains pungent phenolic substances with pronounced antioxidative and antiinflammatory activities. In the present study, we have determined the antitumor promotional activity of [6]-gingerol, a major pungent principle of ginger, using a two-stage mouse skin carcinogenesis model. Topical application of [6]-gingerol onto shaven backs of female ICR mice prior to each topical dose of 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly inhibited 7,12-dimethylbenz[a]anthracene-induced skin papillomagenesis. The compound also suppressed TPA-induced epidermal ornithine decarboxylase activity and inflammation.

    Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Capillary Permeability; Catechols; Curcumin; Epidermis; Fatty Alcohols; Female; Inflammation; Mice; Mice, Inbred ICR; Ornithine Decarboxylase; Ornithine Decarboxylase Inhibitors; Plants, Medicinal; Skin Neoplasms; Tetradecanoylphorbol Acetate

1998