curcumin and geldanamycin

curcumin has been researched along with geldanamycin* in 3 studies

Other Studies

3 other study(ies) available for curcumin and geldanamycin

ArticleYear
The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide.
    Toxicology and applied pharmacology, 2014, Jan-01, Volume: 274, Issue:1

    Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO)3Cl2]2 (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic.

    Topics: Benzoquinones; Breast Neoplasms; Carbon Monoxide; Cell Line, Tumor; Cell Proliferation; Curcumin; Enzyme Induction; Female; Heme Oxygenase-1; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; MCF-7 Cells

2014
Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade.
    Blood, 2001, Apr-01, Volume: 97, Issue:7

    Cotreatment with a minimally toxic concentration of the protein kinase C (PKC) activator (and down-regulator) bryostatin 1 (BRY) induced a marked increase in mitochondrial dysfunction and apoptosis in U937 monocytic leukemia cells exposed to the proteasome inhibitor lactacystin (LC). This effect was blocked by cycloheximide, but not by alpha-amanitin or actinomycin D. Qualitatively similar interactions were observed with other PKC activators (eg, phorbol 12-myristate 13-acetate and mezerein), but not phospholipase C, which does not down-regulate the enzyme. These events were examined in relationship to functional alterations in stress (eg, SAPK, JNK) and survival (eg, MAPK, ERK) signaling pathways. The observations that LC/BRY treatment failed to trigger JNK activation and that cell death was unaffected by a dominant-interfering form of c-JUN (TAM67) or by pretreatment with either curcumin or the p38/RK inhibitor, SB203580, suggested that the SAPK pathway was not involved in potentiation of apoptosis. In marked contrast, perturbations in the PKC/Raf/MAPK pathway played an integral role in LC/BRY-mediated cell death based on evidence that pretreatment of cells with bisindolylmaleimide I, a selective PKC inhibitor, or geldanamycin, a benzoquinone ansamycin, which destabilizes and depletes Raf-1, markedly suppressed apoptosis. Furthermore, ERK phosphorylation was substantially prolonged in LC/BRY-treated cells compared to those exposed to BRY alone, and pretreatment with the highly specific MEK inhibitors, PD98059, U0126, and SL327, opposed ERK activation while protecting cells from LC/BRY-induced lethality. Together, these findings suggest a role for activation and/or dysregulation of the PKC/MAPK cascade in modulation of leukemic cell apoptosis following exposure to the proteasome inhibitor LC. (Blood. 2001;97:2105-2114)

    Topics: Acetylcysteine; Amanitins; Aminoacetonitrile; Apoptosis; Benzoquinones; Bryostatins; Butadienes; Curcumin; Cysteine Endopeptidases; Dactinomycin; Diterpenes; Drug Synergism; Enzyme Activation; Flavonoids; Humans; Imidazoles; Indoles; JNK Mitogen-Activated Protein Kinases; Lactams, Macrocyclic; Lactones; Macrolides; Maleimides; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Multienzyme Complexes; Neoplasm Proteins; Nitriles; Nucleic Acid Synthesis Inhibitors; p38 Mitogen-Activated Protein Kinases; Protease Inhibitors; Proteasome Endopeptidase Complex; Protein Kinase C; Protein Synthesis Inhibitors; Proto-Oncogene Proteins c-raf; Pyridines; Quinones; Terpenes; Tetradecanoylphorbol Acetate; Transcription Factor AP-1; Type C Phospholipases; U937 Cells; Ubiquitins

2001
Caspase-dependent cleavage of ErbB-2 by geldanamycin and staurosporin.
    The Journal of biological chemistry, 2001, Sep-07, Volume: 276, Issue:36

    The geldanamycin-induced degradation of ErbB-2 produces a 23-kDa carboxyl-terminal fragment, which has been isolated and subjected to amino-terminal microsequencing. The obtained sequence indicates that the amino terminus of this fragment corresponds to Gly-1126 of ErbB-2. Analysis of the residues immediately before Gly-1126 suggests that cleavage may involve caspase activity. Site-directed mutagenesis of Asp-1125 in ErbB-2 prevents geldanamycin-provoked formation of the 23-kDa fragment, consistent with the requirement of this residue for caspase-dependent cleavage in known substrates. Also, the addition of the pan-caspase inhibitor Z-VAD-FMK blocks formation of the 23-kDa ErbB-2 fragment in cells exposed to geldanamycin. Interestingly, staurosporin and curcumin are also shown to provoke the degradation of ErbB-2 with formation of the 23-kDa carboxyl-terminal fragment. The generation of this fragment by staurosporin or curcumin is likewise blocked by caspase inhibition. Caspase inhibition does not prevent accelerated degradation of the 185-kDa native ErbB-2 in geldanamycin-treated cells but does significantly prevent staurosporin-stimulated metabolic loss of ErbB-2.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Benzoquinones; Caspase Inhibitors; Caspases; COS Cells; Curcumin; Cytoplasm; Enzyme Inhibitors; Glycine; Humans; Immunoblotting; Lactams, Macrocyclic; Mutagenesis, Site-Directed; Mutation; Protein Binding; Protein Structure, Tertiary; Quinones; Receptor, ErbB-2; Sequence Analysis, Protein; Staurosporine; Transfection; Tumor Cells, Cultured

2001