curcumin and garcinol

curcumin has been researched along with garcinol* in 6 studies

Reviews

1 review(s) available for curcumin and garcinol

ArticleYear
The bounty of nature for changing the cancer landscape.
    Molecular nutrition & food research, 2016, Volume: 60, Issue:6

    The landscape of cancer has changed considerably in past several years, due mainly to aggressive screening, accumulation of data from basic and epidemiological studies, and the advances in translational research. Natural anticancer agents have always been a part and parcel of cancer research. The initial focus on natural anticancer agents was in context of their cancer chemopreventive properties but their ability to selectively target oncogenic signaling pathways has also been recognized. In light of the rapid advancements in our understanding of the role of microRNAs, cancer stem cells, and epigenetic events in cancer initiation and progression, a number of natural anticancer agents are showing promise in vitro, in vivo as well as in preclinical studies. Moreover, parent structures of natural agents are being extensively modified with the hope of improving efficacy, specificity, and bioavailability. In this article, we focus on two natural agents, 3,3'-diindolylmethane and garcinol, along with 3,4-difluorobenzo curcumin, a synthetic analog of natural agent curcumin. We showcase how these anticancer agents are changing cancer landscape by modulating novel microRNAs, epigenetic factors, and cancer stem cell markers. These activities are relevant and being appreciated for overcoming drug resistance and inhibition of metastases, the two overarching clinical challenges in modern medicine.

    Topics: Antineoplastic Agents; Biomarkers, Tumor; Cell Line, Tumor; Curcumin; Dietary Supplements; Epigenesis, Genetic; Epithelial-Mesenchymal Transition; Humans; Indoles; MicroRNAs; Neoplasms; Neoplastic Stem Cells; Signal Transduction; Terpenes

2016

Other Studies

5 other study(ies) available for curcumin and garcinol

ArticleYear
Effects of histone acetyltransferase inhibitors on L-DOPA-induced dyskinesia in a murine model of Parkinson's disease.
    Journal of neural transmission (Vienna, Austria : 1996), 2018, Volume: 125, Issue:9

    Histone acetylation is a key regulatory factor for gene expression in cells. Modulation of histone acetylation by targeting of histone acetyltransferases (HATs) effectively alters many gene expression profiles and synaptic plasticity in the brain. However, the role of HATs on L-DOPA-induced dyskinesia of Parkinson's disease (PD) has not been reported. Our aim was to determine whether HAT inhibitors such as anacardic acid, garcinol, and curcumin from natural plants reduce severity of L-DOPA-induced dyskinesia using a unilaterally 6-hydroxydopamine (6-OHDA)-lesioned PD mouse model. Anacardic acid 2 mg/kg, garcinol 5 mg/kg, or curcumin 100 mg/kg co-treatment with L-DOPA significantly reduced the axial, limb, and orofacial (ALO) score indicating less dyskinesia with administration of HAT inhibitors in 6-OHDA-lesioned mice. Additionally, L-DOPA's efficacy was not altered by the compounds in the early stage of treatment. The expression levels of c-Fos, Fra-2, and Arc were effectively decreased by administration of HAT inhibitors in the ipsilateral striatum. Our findings indicate that HAT inhibitor co-treatment with L-DOPA may have therapeutic potential for management of L-DOPA-induced dyskinesia in patients with PD.

    Topics: Anacardic Acids; Animals; Antiparkinson Agents; Curcumin; Cytoskeletal Proteins; Drug Evaluation, Preclinical; Dyskinesia, Drug-Induced; Enzyme Inhibitors; Fos-Related Antigen-2; Gene Expression Regulation; Histone Acetyltransferases; Histone Code; Levodopa; Male; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Oxidopamine; Parkinsonian Disorders; Proto-Oncogene Proteins c-fos; Specific Pathogen-Free Organisms; Substantia Nigra; Terpenes

2018
Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers.
    Autophagy, 2014, Volume: 10, Issue:11

    Nutrient depletion, which is one of the physiological triggers of autophagy, results in the depletion of intracellular acetyl coenzyme A (AcCoA) coupled to the deacetylation of cellular proteins. We surmise that there are 3 possibilities to mimic these effects, namely (i) the depletion of cytosolic AcCoA by interfering with its biosynthesis, (ii) the inhibition of acetyltransferases, which are enzymes that transfer acetyl groups from AcCoA to other molecules, mostly leucine residues in cellular proteins, or (iii) the stimulation of deacetylases, which catalyze the removal of acetyl groups from leucine residues. There are several examples of rather nontoxic natural compounds that act as AcCoA depleting agents (e.g., hydroxycitrate), acetyltransferase inhibitors (e.g., anacardic acid, curcumin, epigallocatechin-3-gallate, garcinol, spermidine) or deacetylase activators (e.g., nicotinamide, resveratrol), and that are highly efficient inducers of autophagy in vitro and in vivo, in rodents. Another common characteristic of these agents is their capacity to reduce aging-associated diseases and to confer protective responses against ischemia-induced organ damage. Hence, we classify them as "caloric restriction mimetics" (CRM). Here, we speculate that CRM may mediate their broad health-improving effects by triggering the same molecular pathways that usually are elicited by long-term caloric restriction or short-term starvation and that imply the induction of autophagy as an obligatory event conferring organismal, organ- or cytoprotection.

    Topics: Acetyl Coenzyme A; Anacardic Acids; Animals; Autophagy; Caloric Restriction; Catalysis; Catechin; Curcumin; Food Deprivation; Humans; Leucine; Mice; Models, Animal; Niacinamide; Plant Extracts; Resveratrol; Spermidine; Starvation; Stilbenes; Terpenes

2014
Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells.
    BMC cancer, 2013, Jan-29, Volume: 13

    Post-translational modifications (PTMs) of histones and other proteins are perturbed in tumours. For example, reduced levels of acetylated H4K16 and trimethylated H4K20 are associated with high tumour grade and poor survival in breast cancer. Drug-like molecules that can reprogram selected histone PTMs in tumour cells are therefore of interest as potential cancer chemopreventive agents. In this study we assessed the effects of the phytocompounds garcinol and curcumin on histone and p53 modification in cancer cells, focussing on the breast tumour cell line MCF7.. Cell viability/proliferation assays, cell cycle analysis by flow cytometry, immunodetection of specific histone and p53 acetylation marks, western blotting, siRNA and RT-qPCR.. Although treatment with curcumin, garcinol or the garcinol derivative LTK-14 hampered MCF7 cell proliferation, differential effects of these compounds on histone modifications were observed. Garcinol treatment resulted in a strong reduction in H3K18 acetylation, which is required for S phase progression. Similar effects of garcinol on H3K18 acetylation were observed in the osteosarcoma cells lines U2OS and SaOS2. In contrast, global levels of acetylated H4K16 and trimethylated H4K20 in MCF7 cells were elevated after garcinol treatment. This was accompanied by upregulation of DNA damage signalling markers such as γH2A.X, H3K56Ac, p53 and TIP60. In contrast, exposure of MCF7 cells to curcumin resulted in increased global levels of acetylated H3K18 and H4K16, and was less effective in inducing DNA damage markers. In addition to its effects on histone modifications, garcinol was found to block CBP/p300-mediated acetylation of the C-terminal activation domain of p53, but resulted in enhanced acetylation of p53K120, and accumulation of p53 in the cytoplasmic compartment. Finally, we show that the elevation of H4K20Me3 levels by garcinol correlated with increased expression of SUV420H2, and was prevented by siRNA targeting of SUV420H2.. In summary, although garcinol and curcumin can both inhibit histone acetyltransferase activities, our results show that these compounds have differential effects on cancer cells in culture. Garcinol treatment alters expression of chromatin modifying enzymes in MCF7 cells, resulting in reprogramming of key histone and p53 PTMs and growth arrest, underscoring its potential as a cancer chemopreventive agent.

    Topics: Acetylation; Antineoplastic Agents; Blotting, Western; Breast Neoplasms; Cell Cycle; Cell Proliferation; Cell Survival; CREB-Binding Protein; Curcumin; DNA Damage; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Flow Cytometry; Histone Acetyltransferases; Histone-Lysine N-Methyltransferase; Histones; Humans; Immunohistochemistry; Lysine Acetyltransferase 5; MCF-7 Cells; Methylation; Polymerase Chain Reaction; Protein Processing, Post-Translational; RNA Interference; Terpenes; Time Factors; Transfection; Tumor Suppressor Protein p53

2013
Chicken HS4 insulator significantly improves baculovirus-mediated foreign gene expression in insect cells by modifying the structure of neighbouring chromatin in virus minichromosome.
    Journal of biotechnology, 2009, Jul-15, Volume: 142, Issue:3-4

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is widely used as a eukaryotic expression vector for protein production. In the current study, chicken beta-globin 5'-HS4 insulator (HS4) was placed downstream of the polyhedrin promoter-directed foreign gene expression cassette in AcMNPV, and found to markedly increase the expression of target gene. When enhanced green fluorescence protein gene (egfp) was used as the reporter gene, cells infected by the recombinant virus with HS4 (AcEGFP-HS4) showed 3.0 and 2.1-fold stronger fluorescence than that by the control virus without HS4 (AcEGFP) at 72 and 96 h post infection, respectively. The level of egfp mRNA was also much higher in cells infected by AcEGFP-HS4 than that by AcEGFP. An increase in gene expression was also seen when firefly luciferase gene or secreted alkaline phosphatase gene was used as a reporter. The insertion of HS4 in the polyhedrin locus has no significant effect on virus replication. The effect of HS4 was orientation-dependent, and sensitive to inhibitors of histone acetyltransferase. In DNase I sensitivity assay, HS4 significantly increased the sensitivity of neighbouring DNA to nuclease, but had little effect on DNA of a distal locus. These results suggested that HS4 insulator might affect baculovirus gene expression by modifying the structure of neighbouring chromatin in the virus minichromosome.

    Topics: Acetylation; Animals; Baculoviridae; beta-Globins; Cells, Cultured; Chickens; Chromatin; Cloning, Molecular; Curcumin; Deoxyribonuclease I; Enzyme Inhibitors; Genes, Reporter; Genetic Vectors; Green Fluorescent Proteins; Insulator Elements; Microscopy, Fluorescence; Protein Engineering; Recombinant Proteins; Spodoptera; Terpenes; Viral Envelope Proteins

2009
Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells.
    Journal of agricultural and food chemistry, 2001, Volume: 49, Issue:3

    Garcinol, a polyisoprenylated benzophenone, was purified from Garcinia indica fruit rind. The effects of garcinol and curcumin on cell viability in human leukemia HL-60 cells were investigated. Garcinol and curcumin displayed strong growth inhibitory effects against human leukemia HL-60 cells, with estimated IC(50) values of 9.42 and 19.5 microM, respectively. Garcinol was able to induce apoptosis in a concentration- and time-dependent manner; however, curcumin was less effective. Treatment with garcinol caused induction of caspase-3/CPP32 activity in a dose- and time-dependent manner, but not caspase-1 activity, and induced the degradation of poly(ADP-ribose) polymerase (PARP). Pretreatment with caspase-3 inhibitor inhibited garcinol-induced DNA fragmentation. Treatment with garcinol (20 microM) caused a rapid loss of mitochondrial transmembrane potential, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. The cleavage of D4-GDI, an abundant hematopoietic cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. Of these, Bcl-2, Bad, and Bax were studied. The level of expression of Bcl-2 slightly decreased, while the levels of Bad and Bax were dramatically increased in cells treated with garcinol. These results indicate that garcinol allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA and induces DFF-45 (DNA fragmentation factor) degradation. It is suggested that garcinol-induced apoptosis is triggered by the release of cytochrome c into the cytosol, procaspase-9 processing, activation of caspase-3 and caspase-2, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by garcinol may provide a pivotal mechanism for its cancer chemopreventive action.

    Topics: Antineoplastic Agents; Apoptosis; Caspase 3; Caspases; Cell Survival; Curcumin; Cysteine Proteinase Inhibitors; Cytochrome c Group; Enzyme Activation; HL-60 Cells; Humans; Intracellular Membranes; Membrane Potentials; Mitochondria; Oligopeptides; Terpenes

2001