curcumin has been researched along with cypermethrin* in 4 studies
4 other study(ies) available for curcumin and cypermethrin
Article | Year |
---|---|
Hepatoprotective Effect of Curcumin Nano-Lipid Carrier against Cypermethrin Toxicity by Countering the Oxidative, Inflammatory, and Apoptotic Changes in Wistar Rats.
This study investigated the potential hepatoprotective activity of curcumin-incorporated nano-lipid carrier (Cur-NLC) against cypermethrin (Cyp) toxicity in adult Wistar male rats. All animals in groups III, IV, V, and VI were subjected to Cyp (50 mg/kg) toxicity for 15 days. Three different doses of Cur-NLC (1, 2.5, and 5 mg/kg/day) were administered orally for 10 days. The toxic effects were evaluated considering the increases in serum hepatic biomarkers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein and albumin, and lipid peroxidation (LPO), as well as a decrease in antioxidative activity (reduced glutathione (GSH), superoxide dismutase (SOD), and catalase) and the upregulation of inflammatory cytokines (IL-1β, IL-6, and TNF-α). Immunohistochemistry studies of proteins (NF-κB, Apaf-1, 4-HNE, and Bax) showed enhanced expression, and histopathological examination revealed architectural changes in liver cells, indicating liver toxicity in animals. Toxicity was determined by quantitative and qualitative determinations of DNA fragmentation, which show massive apoptosis with Cyp treatment. The administration of Cur-NLC significantly ameliorates all changes caused by Cyp, such as a decrease in the levels of serum liver markers, an increase in antioxidative parameters, a decrease in expression of inflammatory cytokines (IL-1β, IL-6, TNF-α, and NF-κB), and apoptosis (caspases-3, 9, Apaf-1, 4-HNE, and Bax), according to calorimetric and immunohistochemistry studies. The smear-like pattern of DNA is ameliorated similarly to the control at a high dose of Cur-NLC. Furthermore, all histopathological changes were reduced to a level close to the control. In conclusion, Cur-NLC could be a potent nutraceutical that exhibits a hepatoprotective effect against Cyp-induced hepatotoxicity in rats. Topics: Animals; Antioxidants; bcl-2-Associated X Protein; Chemical and Drug Induced Liver Injury; Curcumin; Interleukin-6; Liver; Male; NF-kappa B; Oxidative Stress; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha | 2023 |
Poly lactide-co-glycolide encapsulated nano-curcumin promoting antagonistic interactions between HSP 90 and XRCC1 proteins to prevent cypermethrin-induced toxicity: An in silico predicted in vitro and in vivo approach.
The present study describes the preparation and characterization of poly-lactide-co-glycolide encapsulated nano-curcumin (NCUR) drug, and its potential efficacy against the pesticide, such as cypermethrin-induced DNA damage and genotoxicity. Cypermethrin, the chosen pesticide, contaminates the aquatic environment after being washed off from the agricultural field to nearby water bodies leading to biomagnification-related perturbation of the ecological balance and overall environmental health by elevating adverse effects on non-target organisms producing toxic metabolites through biotransformation. The physico-chemical properties of NCUR were evaluated by employing the AFM, DLS and UV-Vis techniques. Sustainable release of NCUR, their bio-availability and ability to cross the blood-brain-barrier was assessed in the fish model. The in silico molecular docking study to identify the signalling proteins that interact with phyto-core-compound curcumin (CUR) was undertaken to predict the effectiveness of NCUR to combat pesticide-induced toxicity by modulating p53, PARP, HSP 90 and XRCC1 stress proteins, and other associated parameters in in vivo model using tilapia fish and in vitro model using L6 (mammalian skeletal muscle) cell line. Overall results revealed that negatively charged poly-lactide-co-glycolide (PLGA)-encapsulated NCUR (∼46 nm) showed hyperchromic binding with DNA and modulated the signalling cascades involved in stress and DNA repair mechanisms, corroborating well with the in silico prediction that would pave a new pathway in the arena of chemical and biological sciences to serve mankind. Topics: Animals; Curcumin; Mammals; Molecular Docking Simulation; Nanoparticles; Pesticides | 2022 |
Nephroprotective effects of curcumin loaded chitosan nanoparticles in cypermethrin induced renal toxicity in rabbits.
Cypermethrin, a pyrethroid insecticide, may cause several adverse effects including nephrotoxicity. Curcumin is a nutraceutical with many pharmacological effects including nephroprotective effects. But its effective clinical use is limited due to poor bioavailability, physicochemical instability, low bioactive absorption, quick metabolization, less penetration, and targeting efficacy. To resolve these issues, curcumin is incorporated in chitosan nanoparticles. The focus of the study was to prepare and characterize curcumin loaded chitosan nanoparticles and evaluate their nephroprotective activity in a cypermethrin induced renal toxicity. The curcumin loaded chitosan nanoparticles were prepared by using solvent displacement method and characterized by particle size, zeta potential, polydispersity index, entrapment efficiency, and FTIR. The prepared formulation was stable and lies within nanometer range (264.8 nm), and possessed high drug loading capacity (84.64%). Cypermethrin (24 mg/kg body weight) and Curcumin loaded chitosan nanoparticles (15 mg/kg and 30 mg/kg body weight) were orally administered to 20 rabbits (4 groups) for 28 days. It was found that cypermethrin significantly increased the serum levels of creatinine, urea, and BUN and decreased glutathione S-transferase and superoxide dismutase. Co-administration of curcumin loaded chitosan nanoparticles provided pronounced beneficial effects against cypermethrin-induced biochemical alterations and oxidative damage in the kidneys of rabbits. 30 mg/kg body weight of curcumin loaded chitosan nanoparticles have better nephroprotective effects as compared to 15 mg/kg body weight. Topics: Animals; Chitosan; Curcumin; Drug Carriers; Nanoparticles; Particle Size; Pyrethrins; Rabbits | 2020 |
Protective effect of curcumin on cypermethrin-induced oxidative stress in Wistar rats.
The aim of present study was to investigate the protective effect of curcumin on cypermethrin-induced changes in blood biochemical markers and tissue antioxidant enzyme in rats. Rats were divided into six groups of six each: group I used as control and II and III groups were used as vehicle control. While, groups IV, V and VI were orally treated with curcumin (100 mg/kg body weight), cypermethrin (25 mg/kg body weight) and cypermethrin plus curcumin, respectively for 28 days. Serum biochemical markers were measured in the serum, and the levels of lipid peroxidation and antioxidant enzyme activity were determined in the liver, kidney and brain. Cypermethrin administration caused elevated level of blood biochemical markers in serum and lipid peroxidation in liver, kidney and brain. While the activities of non-enzymatic and enzymatic antioxidants levels were decreased except superoxide dismutase in liver, kidney and brain tissues. The presence of curcumin with cypermethrin significantly decreased the blood biochemical markers and lipid peroxidation but significantly increased the reduced glutathione, catalase and glutathione peroxidase level and preserved the normal histological architecture of the liver, kidney and brain. Our results indicate that curcumin can be potent protective agent against cypermethrin-induced biochemical alterations and oxidative damage in rats. Topics: Animals; Antioxidants; Brain; Curcumin; Insecticides; Kidney; Lipid Peroxidation; Liver; Male; Oxidative Stress; Pyrethrins; Rats; Rats, Wistar | 2012 |