curcumin and caffeic-acid-phenethyl-ester

curcumin has been researched along with caffeic-acid-phenethyl-ester* in 16 studies

Reviews

2 review(s) available for curcumin and caffeic-acid-phenethyl-ester

ArticleYear
Natural Product-Based Nanomedicine in Treatment of Inflammatory Bowel Disease.
    International journal of molecular sciences, 2020, May-31, Volume: 21, Issue:11

    Topics: Animals; Benzoquinones; Biological Products; Biomimetics; Caffeic Acids; Curcumin; Cytokines; Exosomes; Humans; Inflammation; Inflammatory Bowel Diseases; Insecta; Macromolecular Substances; Nanomedicine; Oxidative Stress; Phenylethyl Alcohol; Phytochemicals; Plant Extracts; Polysaccharides; Quercetin; Resveratrol; Stilbenes; Transcription Factors; Translational Research, Biomedical; Vasoactive Intestinal Peptide; Zingiber officinale

2020
Radiation-Induced Heart Diseases: Protective Effects of Natural Products.
    Medicina (Kaunas, Lithuania), 2019, May-09, Volume: 55, Issue:5

    Cardiovascular diseases (CVDs) account for the majority of deaths worldwide. Radiation-induced heart diseases (RIHD) is one of the side effects following exposure to ionizing radiation (IR). Exposure could be from various forms such as diagnostic imaging, radiotherapy for cancer treatment, as well as nuclear disasters and nuclear accidents. RIHD is mostly observed after radiotherapy for thoracic malignancies, especially left breast cancer. RIHD may affect the supply of blood to heart muscles, leading to an increase in the risk of heart attacks to irradiated persons. Due to its dose-limiting consequence, RIHD has a negative effect on the therapeutic efficacy of radiotherapy. Several methods have been proposed for protection against RIHD. In this paper, we review the use of natural products, which have shown promising results for protection against RIHD.

    Topics: Biological Products; Caffeic Acids; Curcumin; Drug Combinations; Drugs, Chinese Herbal; Guaiacol; Heart Diseases; Hesperidin; Humans; Melatonin; Phenylethyl Alcohol; Protective Factors; Radiation Injuries; Selenium; Vitis

2019

Other Studies

14 other study(ies) available for curcumin and caffeic-acid-phenethyl-ester

ArticleYear
Antiradical properties of curcumin, caffeic acid phenethyl ester, and chicoric acid: a DFT study.
    Journal of molecular modeling, 2022, Feb-26, Volume: 28, Issue:3

    The antiradical properties and possible mechanisms of action of the tautomers of curcumin, caffeic acid phenethyl ester (CAPE), and chicoric acid (CA) have been studied within density functional theory (DFT). We calculated global chemical reactivity descriptors from conceptual DFT, pK

    Topics: Caffeic Acids; Curcumin; Phenylethyl Alcohol; Succinates

2022
Neuroprotective effect of three caffeic acid derivatives via ameliorate oxidative stress and enhance PKA/CREB signaling pathway.
    Behavioural brain research, 2017, 06-15, Volume: 328

    Topics: Animals; Avoidance Learning; Caffeic Acids; Cell Survival; Curcumin; Cyclic AMP Response Element-Binding Protein; Cyclic AMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Galactose; Hydrogen Peroxide; Lactates; Maze Learning; Mice; Neuroprotective Agents; Oxidative Stress; PC12 Cells; Phenylethyl Alcohol; Random Allocation; Rats; Signal Transduction; Spatial Memory

2017
Class 3 inhibition of hERG K+ channel by caffeic acid phenethyl ester (CAPE) and curcumin.
    Pflugers Archiv : European journal of physiology, 2013, Volume: 465, Issue:8

    Human ether-á-go-go-related gene (hERG) K(+) channel current (I hERG ) is inhibited by various compounds and genetic mutations, potentially resulting in cardiac arrhythmia. Here, we investigated effects of caffeic acid phenethyl ester (CAPE) and curcumin, two natural anti-inflammatory polyphenols, on I hERG in HEK-293 cells overexpressed with hERG. CAPE dose-dependently decreased repolarization tail current of hERG (I hERG,tail; IC50, 10.6 ± 0.5 μM). CAPE also shifted half-activation voltage (V 1/2) to the left (from -17.5 to -26.5 mV) and accelerated activation and inactivation kinetics. The CAPE inhibition of I hERG,tail was not attenuated in the pore-blocker site mutants of hERG (Y652A and F656A). A point mutation of Cys723 (C723S) mimicked the effects of CAPE and caused a left shift of V 1/2 and acceleration of I hERG,tail deactivation. However, I hERG,tail inhibition by CAPE was still observed in C723S. Taken together, CAPE inhibits hERG channel by class 3 mechanism, i.e., modification of gating, not by blocking the pore. Curcumin induced changes of I hERG similar to those of CAPE, while additional interaction with pore-blocking sites was suggested from attenuated I hERG,tail inhibition in Y652A and F656A. Interestingly, I hERG induced by human action potential voltage clamp was increased by CAPE while decreased by curcumin. Mathematical simulation of action potential derived from the experimental results of CAPE and curcumin supports that CAPE, but not curcumin, would induce shortening of AP duration by facilitation of I hERG . The above results revealed intriguing roles of Cys723 in hERG kinetics and suggested that conventional drug screening by using step pulse protocol for I hERG,tail would overlook the hERG kinetic modulations that could compensate the decrease of I hERG,tail.

    Topics: Action Potentials; Caffeic Acids; Curcumin; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; HEK293 Cells; Humans; Kinetics; Phenylethyl Alcohol; Potassium Channel Blockers; Potassium Channels, Voltage-Gated

2013
Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.
    Phytotherapy research : PTR, 2012, Volume: 26, Issue:1

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients.

    Topics: Antineoplastic Agents; Biological Availability; Caffeic Acids; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Chromones; Curcuma; Curcumin; Drug Therapy, Combination; Enzyme Inhibitors; ErbB Receptors; Humans; Morpholines; NF-kappa B; Phenylethyl Alcohol; Phosphoinositide-3 Kinase Inhibitors; Phytotherapy; Plant Extracts; Pyrimidines; Quinazolines; Receptors, Fibroblast Growth Factor; Signal Transduction; Somatomedins; Tyrphostins

2012
Inhibition of Ca(2+) release-activated Ca(2+) channel (CRAC) by curcumin and caffeic acid phenethyl ester (CAPE) via electrophilic addition to a cysteine residue of Orai1.
    Biochemical and biophysical research communications, 2012, Nov-09, Volume: 428, Issue:1

    Ca(2+) influx through Ca(2+)-release activated Ca(2+) channels (CRAC) is critical for activating immune cells. Orai and STIM proteins comprise the molecular components of CRAC. We previously observed that curcumin and caffeic acid phenethyl ester (CAPE) inhibit CRAC current in Orai1/STIM1-co-expressing HEK293 cells (Nam et al., 2009; Shin et al., 2011) [1,2]. Both compounds contain electrophilic α,β-unsaturated carbonyl groups that potentially form Michael addition with cysteine residues. We investigated the sensitivity of cysteine mutated Orai1 to curcumin and CAPE to delineate their inhibitory mechanism. Replacing the 195 cysteine residue with serine (C195S) reversed the effect of CAPE from inhibition to facilitation and significantly weakened the inhibitory effect of curcumin. Tetrahydrocurcumin, a curcumin metabolite, showed a less potent inhibitory effect on I(CRAC), and this effect was abolished in C195S Orai1. Additive mutation of other cysteines (C143S and C126S) had no further influence on the effects of CAPE and curcumin. These results indicate that the electrophilic addition to the Orai1 195Cys was responsible for the inhibitory effect of I(CRAC) by curcumin and CAPE.

    Topics: Caffeic Acids; Calcium; Calcium Channels; Curcumin; Cysteine; HEK293 Cells; Humans; Mutation; ORAI1 Protein; Phenylethyl Alcohol

2012
Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders.
    Advances in experimental medicine and biology, 2010, Volume: 698

    In recent years there has been a growing interest, supported by a large number of experimental and epidemiological studies, in the beneficial effects of some commonly used food-derived products in preventingvarious age-related pathologic conditions, ranging from cancer to neurodegenerative diseases. Spices and herbs often contain active phenolic substances endowed with potent antioxidative and chemopreventive properties. Curcumin is a phytochemical compound extracted from the rhizome of Curcuma Longa. It is the pigment responsible for the characteristic yellow color of Indian curry. Data from our and other laboratories demonstrated that curcumin, as well as some other polyphenols, strongly induce heme oxygenase 1 and Phase II detoxification enzymes in neurons and, by this activation, protect neurons against different modes of oxidative challenge. The potential role of curcumin as a preventive agent against brain aging and neurodegenerative disorders has been recently reinforced by epidemiological studies showing that in India, where this spice is widely used in the daily diet, there is a lower incidence of Alzheimer's disease than in the USA. These studies identify a novel class of compounds that could be used for therapeutic purposes as preventive agents against the acute neurodegenerative conditions that affect many in the world's increasingly ageing population.

    Topics: Aging; Antioxidants; Brain; Caffeic Acids; Catechin; Curcumin; Diet; Flavonoids; Neurodegenerative Diseases; Neuroprotective Agents; Phenols; Phenylethyl Alcohol; Polyphenols

2010
The effects of hydroxycinnamic acid derivatives on adiponectin secretion.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2009, Volume: 16, Issue:2-3

    Adiponectin is positively correlated with insulin sensitivity. Hydroxycinnamic acid derivatives (HADs), observed ubiquitously in plants, have some physiological functions. In this study, we investigated the effect of HADs on serum adiponectin concentrations in mice and on adiponectin secretion of 3T3-L1 adipocytes. In mice, serum adiponectin concentrations were increased by gamma-oryzanol administration. CAPE, curcumin, and trans-ferulic acid markedly enhanced the adiponectin secretion of 3T3-L1 adipocytes, but not gamma-oryzanol. To clarify the effects of gamma-oryzanol in mice or the effects of HADs on the underlying mechanisms of adiponectin secretion, we further investigated the effect of HADs on adiponectin secretion in the NF-kappaB activation state. Although the adiponectin secretion was reduced in the presence of lipopolysaccharide plus TNF-alpha and IFN-gamma, only gamma-oryzanol supported the activity of adiponectin secretion under NF-kappaB activated condition. The results indicate that these HADs might regulate adiponectin secretion by the inhibition of NF-kappaB activation. HADs might be effective for ameliorating type 2 diabetes.

    Topics: 3T3-L1 Cells; Adipocytes; Adiponectin; Animals; Caffeic Acids; Coumaric Acids; Curcumin; Diabetes Mellitus, Type 2; Hypoglycemic Agents; Hypolipidemic Agents; Insulin Resistance; Interferon-gamma; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Phenylethyl Alcohol; Phenylpropionates; Phytotherapy; Pioglitazone; Plant Extracts; Plant Oils; Rice Bran Oil; Thiazolidinediones; Tumor Necrosis Factor-alpha

2009
Differential activation of heme oxygenase-1 by chalcones and rosolic acid in endothelial cells.
    The Journal of pharmacology and experimental therapeutics, 2005, Volume: 312, Issue:2

    The induction of heme oxygenase-1 (HO-1) is widely recognized as an effective cellular strategy to counteract a variety of stressful events. We have shown that curcumin and caffeic acid phenethyl ester, two naturally occurring phytochemicals that possess antioxidant, anti-inflammatory, and anticarcinogenic activities, induce HO-1 in many cell types. This suggests that stimulation of HO-1 could partly underlie the beneficial effects exerted by these plant-derived constituents. Here we examined the ability of additional plant constituents to up-regulate heme oxygenase activity and HO-1 in aortic endothelial cells. Incubation of endothelial cells with a series of polyphenolic chalcones (5-50 microM) resulted in increased heme oxygenase activity; interestingly, the chemical structure dictated the pattern of heme oxygenase induction, which was unique to each particular compound employed. We also found that rosolic acid, a constituent isolated from the rhizome of Plantago asiatica L. dramatically increased HO-1 in a concentration- and time-dependent manner. Severe cytotoxicity was observed after prolonged exposure (24 or 48 h) of cells to curcumin and caffeic acid phenethyl ester, whereas 2'-hydroxychalcone and rosolic acid did not affect cell viability. By using different mitogen-activated protein kinase inhibitors, we determined that the extracellular signal-regulated kinase, p38, and c-Jun NH(2)-terminal protein kinase pathways play only a minor role in the induction of HO-1 by rosolic acid and 2'-hydroxychalcone. On the other hand, increased intra- and extracellular thiols markedly reduced the rise in heme oxygenase activity elicited by rosolic acid. Thus, this study identified novel plant constituents that highly induce HO-1 in endothelial cells and investigated some of the mechanisms involved in this effect.

    Topics: Animals; Aurintricarboxylic Acid; Caffeic Acids; Cattle; Cell Survival; Chalcone; Chalcones; Curcumin; Endothelial Cells; Enzyme Activation; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Mitogen-Activated Protein Kinases; Oxidative Stress; Phenylethyl Alcohol

2005
Role of curcumin and the inhibition of NF-kappaB in the onset of chemotherapy-induced mucosal barrier injury.
    Leukemia, 2004, Volume: 18, Issue:2

    The inhibition of nuclear factor kappa B (NF-kappaB) by, for instance, curcumin is becoming an important new approach in combination with chemotherapy or irradiation for the treatment of a variety of cancers including haematological malignancies. A dose-limiting side effect of anticancer therapy in the gastrointestinal tract is mucosal barrier injury. It is hypothesised that mucosal barrier injury is initiated and amplified by proinflammatory-and NF-kappaB-regulated mediators. Therefore, the effect of NF-kappaB inhibition was studied in the onset of mucosal barrier injury. In response to cytostatic drug treatment (arabinoside cytosine (Ara-C) and methotrexate (MTX)), NF-kappaB was activated in intestinal epithelial cells (IEC-6) resulting in an NF-kappaB-related induction of tumour necrosis factor alpha and monocyte chemoattractant protein-1. NF-kappaB inhibition increased the susceptibility of IEC-6 cells to Ara-C as well as MTX-induced cell death when obtained by the addition of caffeic acid phenethyl ester (CAPE), but not using curcumin. In an animal model for MTX-induced mucosal barrier injury, the induction of NF-kappaB-related cytokines and chemokines was detected upon treatment with MTX. Despite increased susceptibility shown in vitro, the inhibition of NF-kappaB resulted in a partial amelioration of villous atrophy normally seen in the small intestine upon MTX treatment. These results show that the inhibition of NF-kappaB does not increase intestinal side effects of the anticancer treatment, suggesting a safe use of curcumin and CAPE in combination with anticancer treatment.

    Topics: Animals; Antineoplastic Agents; Caffeic Acids; Cell Line; Curcumin; Cytarabine; Drug Interactions; Female; Intestinal Mucosa; Methotrexate; NF-kappa B; Phenylethyl Alcohol; Rats; Rats, Inbred Strains

2004
Sulindac sulfide and caffeic acid phenethyl ester suppress the motility of lung adenocarcinoma cells promoted by transforming growth factor-beta through Akt inhibition.
    Journal of cancer research and clinical oncology, 2004, Volume: 130, Issue:3

    Cell migration is essential for invasive and metastatic phenotypes of cancer cells. Potential chemopreventive agents of cancer-sulindac sulfide, caffeic acid phenethyl ester (CAPE), curcumin, and (+)-catechin-have been reported to interfere with several types of intracellular signaling. In this study, we examined the effects of these agents on transforming growth factor-beta(TGF-beta)-induced motility and Akt phosphorylation in A549 cells. Judged by gold particle phagokinesis assay, sulindac sulfide, CAPE, and curcumin suppressed the motility of A549 cells promoted by TGF-beta. LY294002, a specific inhibitor of phosphatidylinositol 3-kinase(PI3K)/Akt signaling, also suppressed TGF-beta-induced motility and Akt phosphorylation. Sulindac sulfide and CAPE, but not curcumin, suppressed TGF-beta-induced Akt phosphorylation. We conclude that sulindac sulfide and CAPE suppress the motility promoted by TGF-beta in lung adenocarcinoma cells through the suppression of Akt. Our observations raise the possibility that these agents, except for (+)-catechin, can be applied not only as chemopreventive agents but also as anti-metastatic therapy.

    Topics: Adenocarcinoma; Antineoplastic Agents; Caffeic Acids; Catechin; Cell Movement; Curcumin; Humans; Lung Neoplasms; Neovascularization, Pathologic; NF-kappa B; Phenylethyl Alcohol; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Sulindac; Transforming Growth Factor beta; Tumor Cells, Cultured

2004
Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element.
    The Biochemical journal, 2003, May-01, Volume: 371, Issue:Pt 3

    The transcription factor Nrf2, which normally exists in an inactive state as a consequence of binding to a cytoskeleton-associated protein Keap1, can be activated by redox-dependent stimuli. Alteration of the Nrf2-Keap1 interaction enables Nrf2 to translocate to the nucleus, bind to the antioxidant-responsive element (ARE) and initiate the transcription of genes coding for detoxifying enzymes and cytoprotective proteins. This response is also triggered by a class of electrophilic compounds including polyphenols and plant-derived constituents. Recently, the natural antioxidants curcumin and caffeic acid phenethyl ester (CAPE) have been identified as potent inducers of haem oxygenase-1 (HO-1), a redox-sensitive inducible protein that provides protection against various forms of stress. Here, we show that in renal epithelial cells both curcumin and CAPE stimulate the expression of Nrf2 in a concentration- and time-dependent manner. This effect was associated with a significant increase in HO-1 protein expression and haem oxygenase activity. From several lines of investigation we also report that curcumin (and, by inference, CAPE) stimulates ho-1 gene activity by promoting inactivation of the Nrf2-Keap1 complex, leading to increased Nrf2 binding to the resident ho-1 AREs. Moreover, using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, we provide data implicating p38 MAPK in curcumin-mediated ho-1 induction. Taken together, these results demonstrate that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway.

    Topics: Animals; Antioxidants; Blotting, Western; Caffeic Acids; Carrier Proteins; Curcumin; DNA-Binding Proteins; Electrophoretic Mobility Shift Assay; Gene Expression Regulation, Enzymologic; Heme Oxygenase (Decyclizing); LLC-PK1 Cells; NF-E2-Related Factor 2; Phenylethyl Alcohol; Promoter Regions, Genetic; Trans-Activators

2003
Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers.
    Molecular pharmacology, 2002, Volume: 61, Issue:3

    Heme oxygenase-1 (HO-1) is a redox-sensitive inducible protein that provides efficient cytoprotection against oxidative stress. Curcumin, a polyphenolic natural compound that possesses anti-tumor and anti-inflammatory properties, has been reported recently to induce potently HO-1 expression in vascular endothelial cells (Free Rad Biol Med 28:1303-1312, 2000). Here, we extend our previous findings by showing that caffeic acid phenethyl ester (CAPE), another plant-derived phenolic agent, markedly increases heme oxygenase activity and HO-1 protein in astrocytes. The effect seems to be related to the peculiar chemical structures of curcumin and CAPE, because analogous antioxidants containing only portions of these two molecules were totally ineffective. At a final concentration of 30 microM, both curcumin and CAPE maximally up-regulated heme oxygenase activity while promoting marked cytotoxicity at higher concentrations (50-100 microM). Similar results were obtained with Curcumin-95, a mixture of curcuminoids commonly used as a dietary supplement. Incubation of astrocytes with curcumin or CAPE at concentrations that promoted maximal heme oxygenase activity resulted in an early increase in reduced glutathione followed by a significant elevation in oxidized glutathione contents. A curcumin-mediated increase in heme oxygenase activity was not affected by the glutathione precursor and thiol donor N-acetyl-L-cysteine. These data suggest that regulation of HO-1 expression by polyphenolic compounds is evoked by a distinctive mechanism which is not necessarily linked to changes in glutathione but might depend on redox signals sustained by specific and targeted sulfydryl groups. This study identifies a novel class of natural substances that could be used for therapeutic purposes as potent inducers of HO-1 in the protection of tissues against inflammatory and neurodegenerative conditions.

    Topics: Acetylcysteine; Animals; Astrocytes; Caffeic Acids; Cell Survival; Cells, Cultured; Curcumin; Drug Interactions; Enzyme Activation; Enzyme Induction; Glutathione; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Phenylethyl Alcohol; Rats; Up-Regulation

2002
Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex.
    Oncogene, 1999, Oct-28, Volume: 18, Issue:44

    Colorectal cancer is a major cause of cancer deaths in Western countries, but epidemiological data suggest that dietary modification might reduce these by as much as 90%. Cyclo-oxygenase 2 (COX2), an inducible isoform of prostaglandin H synthase, which mediates prostaglandin synthesis during inflammation, and which is selectively overexpressed in colon tumours, is thought to play an important role in colon carcinogenesis. Curcumin, a constituent of turmeric, possesses potent anti-inflammatory activity and prevents colon cancer in animal models. However, its mechanism of action is not fully understood. We found that in human colon epithelial cells, curcumin inhibits COX2 induction by the colon tumour promoters, tumour necrosis factor alpha or fecapentaene-12. Induction of COX2 by inflammatory cytokines or hypoxia-induced oxidative stress can be mediated by nuclear factor kappa B (NF-kappaB). Since curcumin inhibits NF-kappaB activation, we examined whether its chemopreventive activity is related to modulation of the signalling pathway which regulates the stability of the NF-kappaB-sequestering protein, IkappaB. Recently components of this pathway, NF-kappaB-inducing kinase and IkappaB kinases, IKKalpha and beta, which phosphorylate IkappaB to release NF-kappaB, have been characterised. Curcumin prevents phosphorylation of IkappaB by inhibiting the activity of the IKKs. This property, together with a long history of consumption without adverse health effects, makes curcumin an important candidate for consideration in colon cancer prevention.

    Topics: Antineoplastic Agents; Caffeic Acids; Colonic Neoplasms; Curcumin; Cyclooxygenase 2; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; I-kappa B Kinase; I-kappa B Proteins; Isoenzymes; Membrane Proteins; NF-kappa B; NF-kappaB-Inducing Kinase; Phenylethyl Alcohol; Polyenes; Prostaglandin-Endoperoxide Synthases; Protein Serine-Threonine Kinases; Signal Transduction; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha

1999
Arylamide inhibitors of HIV-1 integrase.
    Journal of medicinal chemistry, 1997, Apr-11, Volume: 40, Issue:8

    Based on data derived from a large number of HIV-1 integrase inhibitors, similar structural features can be observed, which consist of two aryl units separated by a central linker. For many inhibitors fitting this pattern, at least one aryl ring also requires ortho bis-hydroxylation for significant inhibitory potency. The ability of such catechol species to undergo in situ oxidation to reactive quinones presents one potential limitation to their utility. In an effort to address this problem, a series of inhibitors were prepared which did not contain ortho bishydroxyls. None of these analogues exhibited significant inhibition. Therefore an alternate approach was taken, whose aim was to increase potency rather than eliminate catechol substructures. In this latter study, naphthyl nuclei were utilized as aryl components, since a previous report had indicated that fused bicyclic rings may afford higher affinity relative to monocyclic phenyl-based systems. In preliminary work with monomeric units, it was found that the 6,7-dihydroxy-2-naphthoic acid (17) (IC50 = 4.7 microM) was approximately 10-fold more potent than its 5,6-dihydroxy isomer 19 (IC50 = 62.4 microM). Of particular note was the dramatic difference in potency between free acid 17 and its methyl ester 21 (IC50 > 200 microM). The nearly total loss of activity induced by esterification strongly indicates that the free carboxylic -OH is important for high potency of this compound. This contrasts with the isomeric 5,6-dihydroxy species 19, where esterification had no effect on inhibitory potency (23, IC50 = 52.7 microM). These data provide evidence that the monomeric 6,7- and 5,6-dihydroxynaphthalenes may be interacting with the enzyme in markedly different fashions. However, when these naphthyl nuclei were incorporated into dimeric structures, significant enhancements in potencies each relative to the monomeric acids were observed, with bis-6,7-dihydroxy analogue 49 and bis-5,6-dihydroxy analogue 51 both exhibiting approximately equal potencies (IC50 values of 0.81 and 0.11 microM, respectively).

    Topics: Caffeic Acids; Chromatography, High Pressure Liquid; Curcumin; Cytotoxins; Dose-Response Relationship, Drug; Enzyme Inhibitors; HIV Integrase; HIV Integrase Inhibitors; NF-kappa B; Phenylethyl Alcohol; Quinones; Structure-Activity Relationship

1997