curcumin has been researched along with benzyloxycarbonylleucyl-leucyl-leucine-aldehyde* in 9 studies
1 review(s) available for curcumin and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde
Article | Year |
---|---|
Role of Nuclear Factor Erythroid 2-Related Factor 2 in Diabetic Nephropathy.
Diabetic nephropathy (DN) is manifested as increased urinary protein level, decreased glomerular filtration rate, and final renal dysfunction. DN is the leading cause of end-stage renal disease worldwide and causes a huge societal healthcare burden. Since satisfied treatments are still limited, exploring new strategies for the treatment of this disease is urgently needed. Oxidative stress takes part in the initiation and development of DN. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the cellular response to oxidative stress. Thus, activation of Nrf2 seems to be a new choice for the treatment of DN. In current review, we discussed and summarized the therapeutic effects of Nrf2 activation on DN from both basic and clinical studies. Topics: Animals; Anticarcinogenic Agents; Antioxidant Response Elements; Antioxidants; Curcumin; Cysteine Proteinase Inhibitors; Diabetic Nephropathies; Enzyme Inhibitors; Humans; Isothiocyanates; Leupeptins; Molecular Targeted Therapy; NF-E2-Related Factor 2; Oxidative Stress; Resveratrol; Rutin; Signal Transduction; Stilbenes; Sulfoxides; Trace Elements; Zinc | 2017 |
8 other study(ies) available for curcumin and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde
Article | Year |
---|---|
Therapeutic Potential for Regulation of the Nuclear Factor Kappa-B Transcription Factor p65 to Prevent Cellular Senescence and Activation of Pro-Inflammatory in Mesenchymal Stem Cells.
Mesenchymal stem cells have an important potential in the treatment of age-related diseases. In the last years, small extracellular vesicles derived from these stem cells have been proposed as cell-free therapies. Cellular senescence and proinflammatory activation are involved in the loss of therapeutic capacity and in the phenomenon called inflamm-aging. The regulators of these two biological processes in mesenchymal stem cells are not well-known. In this study, we found that p65 is activated during cellular senescence and inflammatory activation in human umbilical cord-derived mesenchymal stem cell. To demonstrate the central role of p65 in these two processes, we used small-molecular inhibitors of p65, such as JSH-23, MG-132 and curcumin. We found that the inhibition of p65 prevents the cellular senescence phenotype in human umbilical cord-derived mesenchymal stem cells. Besides, p65 inhibition produced the inactivation of proinflammatory molecules as components of a senescence-associated secretory phenotype (SASP) (interleukin-6 and interleukin-8 (IL-6 and IL-8)). Additionally, we found that the inhibition of p65 prevents the transmission of paracrine senescence between mesenchymal stem cells and the proinflammatory message through small extracellular vesicles. Our work highlights the important role of p65 and its inhibition to restore the loss of functionality of small extracellular vesicles from senescent mesenchymal stem cells and their inflamm-aging signature. Topics: Adolescent; Adult; Cell Proliferation; Cells, Cultured; Cellular Senescence; Curcumin; DNA Damage; Female; Humans; Inflammation; Leupeptins; Mesenchymal Stem Cells; Nanoparticles; Paracrine Communication; Phenotype; Phenylenediamines; Transcription Factor RelA; Umbilical Cord | 2021 |
Proteasome stress responses in Schistosoma mansoni.
The proteasome proteolytic system is the major ATP-dependent protease in eukaryotic cells responsible for intracellular protein turnover. Schistosoma mansoni has been reported to contain an ubiquitin-proteasome proteolytic pathway, and many studies have suggested a biological role of proteasomes in the development of this parasite. Additionally, evidence has suggested diversity in proteasome composition under several cellular conditions, and this might contribute to the regulation of its function in this parasite. The proteasomal system has been considered important to support the protein homeostasis during cellular stress. In this study, we described in vitro effects of oxidative stress, heat shock, and chemical stress on S. mansoni adults. Our findings showed that chemical stress induced with curcumin, IBMX, and MG132 modified the gene expression of the proteasomal enzymes SmHul5 and SmUbp6. Likewise, the expression of these genes was upregulated during oxidative stress and heat shock. Analyses of the S. mansoni life cycle showed differential gene expression in sporocysts, schistosomulae, and miracidia. These results suggested that proteasome accessory proteins participate in stress response during the parasite development. The expression level of SmHul5 and SmUbp6 was decreased by 16-fold and 9-fold, respectively, by the chemical stress induced with IBMX, which suggests proteasome disassembly. On the other hand, curcumin, MG132, oxidative stress, and heat shock increased the expression of these genes. Furthermore, the gene expression of maturation proteasome protein (SmPOMP) was increased in stress conditions induced by curcumin, MG132, and H₂O₂, which could be related to the synthesis of new proteasomes. S. mansoni adult worms were found to utilize similar mechanisms to respond to different conditions of stress. Our results demonstrated that oxidative stress, heat shock, and chemical stress modified the expression profile of genes related to the ubiquitin-proteasome system and suggested that the proteasome might be important in the cellular stress response in this parasite. Topics: 1-Methyl-3-isobutylxanthine; Animals; Curcumin; Cytoplasm; Gene Expression Regulation; Helminth Proteins; Hot Temperature; Hydrogen Peroxide; Leupeptins; Oocysts; Proteasome Endopeptidase Complex; Schistosoma mansoni; Stress, Physiological | 2015 |
Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. Topics: Animals; Butadienes; Curcumin; HEK293 Cells; Humans; Large-Conductance Calcium-Activated Potassium Channels; Leupeptins; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nitriles; Proteasome Endopeptidase Complex; Proteolysis; Rats; Up-Regulation | 2015 |
Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells.
The human nasal epithelium is the first line of defense during respiratory virus infection. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma and severe lower respiratory tract disease in infants and young children. We previously reported in human nasal epithelial cells (HNECs), the replication and budding of RSV and the epithelial responses, including release of proinflammatory cytokines and enhancement of the tight junctions, are in part regulated via an NF-κB pathway. In this study, we investigated the effects of the NF-κB in HNECs infected with RSV. Curcumin prevented the replication and budding of RSV and the epithelial responses to it without cytotoxicity. Furthermore, the upregulation of the epithelial barrier function caused by infection with RSV was enhanced by curcumin. Curcumin also has wide pharmacokinetic effects as an inhibitor of NF-κB, eIF-2α dephosphorylation, proteasome and COX2. RSV-infected HNECs were treated with the eIF-2α dephosphorylation blocker salubrinal and the proteasome inhibitor MG132, and inhibitors of COX1 and COX2. Treatment with salubrinal, MG132 and COX2 inhibitor, like curcumin, prevented the replication of RSV and the epithelial responses, and treatment with salubrinal and MG132 enhanced the upregulation of tight junction molecules induced by infection with RSV. These results suggest that curcumin can prevent the replication of RSV and the epithelial responses to it without cytotoxicity and may act as therapy for severe lower respiratory tract disease in infants and young children caused by RSV infection. Topics: Anti-Inflammatory Agents, Non-Steroidal; Child, Preschool; Cinnamates; Curcumin; Cyclooxygenase 1; Cyclooxygenase 2; Enzyme Inhibitors; Epithelial Cells; Eukaryotic Initiation Factor-2; Gene Expression Profiling; Gene Expression Regulation; Humans; Infant; Leupeptins; Nasal Mucosa; NF-kappa B; Oligonucleotide Array Sequence Analysis; Primary Cell Culture; Proteasome Endopeptidase Complex; Respiratory Syncytial Virus, Human; Signal Transduction; Thiourea; Virus Release; Virus Replication | 2013 |
NFκB inhibitors induce cell death in glioblastomas.
Identification of novel target pathways in glioblastoma (GBM) remains critical due to poor prognosis, inefficient therapies and recurrence associated with these tumors. In this work, we evaluated the role of nuclear-factor-kappa-B (NFκB) in the growth of GBM cells, and the potential of NFκB inhibitors as antiglioma agents. NFκB pathway was found overstimulated in GBM cell lines and in tumor specimens compared to normal astrocytes and healthy brain tissues, respectively. Treatment of a panel of established GBM cell lines (U138MG, U87, U373 and C6) with pharmacological NFκB inhibitors (BAY117082, parthenolide, MG132, curcumin and arsenic trioxide) and NFκB-p65 siRNA markedly decreased the viability of GBMs as compared to inhibitors of other signaling pathways such as MAPKs (ERK, JNK and p38), PKC, EGFR and PI3K/Akt. In addition, NFκB inhibitors presented a low toxicity to normal astrocytes, indicating selectivity to cancerous cells. In GBMs, mitochondrial dysfunction (membrane depolarization, bcl-xL downregulation and cytochrome c release) and arrest in the G2/M phase were observed at the early steps of NFκB inhibitors treatment. These events preceded sub-G1 detection, apoptotic body formation and caspase-3 activation. Also, NFκB was found overstimulated in cisplatin-resistant C6 cells, and treatment of GBMs with NFκB inhibitors overcame cisplatin resistance besides potentiating the effects of the chemotherapeutics, cisplatin and doxorubicin. These findings support NFκB as a potential target to cell death induction in GBMs, and that the NFκB inhibitors may be considered for in vivo testing on animal models and possibly on GBM therapy. Topics: Animals; Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Astrocytes; Brain Neoplasms; Cell Cycle; Cell Death; Cell Line, Tumor; Cisplatin; Curcumin; Doxorubicin; Drug Synergism; Glioblastoma; Humans; Leupeptins; Molecular Targeted Therapy; NF-kappa B; Nitriles; Oxides; Rats; Sesquiterpenes; Signal Transduction; Sulfones | 2011 |
Mechanical stretch enhances NF-kappaB-dependent gene expression and poly(ADP-ribose) synthesis in synovial cells.
Temporomandibular joint disorders (TMD) show complex symptoms associated with inflammation, pain and degeneration of the peripheral tissues including synovium. Although it is believed that excessive mechanical stress on synovium causes development of TMD, the molecular mechanism by which mechanical stress triggers TMD has still remained unclear. In order to examine the effect of mechanical stress on synoviocytes, rabbit synovial cells were cyclically stretched in vitro. The stretch efficiently increased the gene expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and NF-kappaB responsive reporter gene constructs. The interruption of NF-kappaB activating pathway by inhibitors resulted in the abrogation of those expressions, indicating the pivotal role of NF-kappaB in the mechanical stretch-mediated COX-2 and iNOS expressions. In parallel, the stretch remarkably increased NO production and poly(ADP-ribose) (PAR) synthesis, suggesting that excessive amounts of NO causes DNA injury and in turn activates PAR synthesis by poly(ADP-ribose) polymerase (PARP). The inhibition of PAR synthesis by a PARP inhibitor or a radical scavenger enhanced the mechanical stretch-induced gene expressions in a NF-kappaB-independent manner, implying an involvement of PARP in the gene expression. Taken together, these results demonstrate that mechanical stress on synovial cells not only induces gene expressions of COX-2 and iNOS but also affects PAR synthesis. Topics: Acetylcysteine; Animals; Cells, Cultured; Curcumin; Cyclooxygenase 2; Free Radical Scavengers; Gene Expression Regulation; Isoquinolines; Leupeptins; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Piperidines; Poly Adenosine Diphosphate Ribose; Pyrrolidines; Rabbits; Stress, Mechanical; Structure-Activity Relationship; Synovial Membrane; Thiocarbamates | 2010 |
Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo.
Curcumin (diferuloylmethane) is the major active ingredient of turmeric (Curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiologic conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the NH(2)-terminal threonine of the proteasomal chymotrypsin-like (CT-like) subunit. Consistently, curcumin potently inhibits the CT-like activity of a purified rabbit 20S proteasome (IC(50) = 1.85 micromol/L) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor-bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression, and apoptosis induction in tumor tissues. Our study shows that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early-stage and late-stage/refractory colon cancer. Topics: Animals; Apoptosis; Caspase 3; Caspase 7; Cell Growth Processes; Colonic Neoplasms; Curcumin; Dose-Response Relationship, Drug; Female; HCT116 Cells; Humans; Leupeptins; Mice; Models, Molecular; Poly(ADP-ribose) Polymerases; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Xenograft Model Antitumor Assays | 2008 |
Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells.
Curcumin, the active chemical of the Asian spice turmeric, exhibits anticancer activity in several human cancer cell lines. We previously have proved that curcumin was a new member of the histone deacetylases (HDAC) inhibitors, while constitutive nuclear factor kappa B (NF-kappaB) is believed to be a crucial event for enhanced proliferation and survival of malignant cells. Here, we investigate the effect of curcumin on the activation of NF-kappaB signal molecule in Raji cells to explore its relationship with HDACs or p300/CREB binding protein (CBP). Curcumin presented striking proliferation inhibition potency on Raji cells in vitro, with the IC(50) value for 24 hr being 25 micromol/l. Significant decreases in the amounts of p300, HDAC1 and HDAC3 were detected after treatment with curcumin. These suppressing effects were more pronounced when the administered dose increased. The protection degradation of HDAC1 and p300 by MG-132 could be partially reversed by curcumin. Furthermore, curcumin could also prevent degradation of I kappaB alpha and inhibit nuclear translocation of the NF-kappaB/p65 subunit, as well as expression of Notch 1, induced by tumour necrosis factor-alpha. The results suggest that the depressive effect of curcumin on NF-kappaB signal transduction pathway may be mediated via the various components of the HDACs and p300/Notch 1 signal molecules, and may represent a new remedy for acute leukaemia. Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; CREB-Binding Protein; Curcumin; Dose-Response Relationship, Drug; E1A-Associated p300 Protein; Gene Expression Regulation; Histone Deacetylase 1; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; I-kappa B Proteins; Inhibitory Concentration 50; Leukemia; Leupeptins; NF-kappa B; NF-KappaB Inhibitor alpha; Receptor, Notch1; Signal Transduction; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2007 |