curcumin and acetovanillone

curcumin has been researched along with acetovanillone* in 6 studies

Other Studies

6 other study(ies) available for curcumin and acetovanillone

ArticleYear
Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington's disease.
    Neurotoxicology, 2017, Volume: 60

    We hypothesized that expression of mutant Huntingtin (HTT) would modulate the neurotoxicity of the commonly used organophosphate insecticide, chlorpyrifos (CPF), revealing cellular mechanisms underlying neurodegeneration. Using a mouse striatal cell model of HD, we report that mutant HD cells are more susceptible to CPF-induced cytotoxicity as compared to wild-type. This CPF-induced cytotoxicity caused increased production of reactive oxygen species, reduced glutathione levels, decreased superoxide dismutase activity, and increased malondialdehyde levels in mutant HD cells relative to wild-type. Furthermore, we show that co-treatment with antioxidant agents attenuated the CPF-induced ROS levels and cytotoxicity. Co-treatment with a NADPH oxidase (NOX) inhibitor, apocynin, also attenuated the CPF-induced ROS production and neurotoxicity. CPF caused increased NOX activity in mutant HD lines that was ameliorated following co-treatment with apocynin. Finally, CPF-induced neurotoxicity significantly increased the protein expression of nuclear factor erythroid 2-related factor (Nrf2) in mutant HD cells as compared to wild-type. This study is the first report of CPF-induced toxicity in HD pathophysiology and suggests that mutant HTT and CPF exhibit a disease-toxicant interaction wherein expression of mutant HTT enhances CPF-induced neurotoxicity via a NOX-mediated oxidative stress mechanism to cause neuronal loss in the full length HTT expressing striatal cells.

    Topics: Acetophenones; Animals; Antioxidants; Cells, Cultured; Chlorpyrifos; Corpus Striatum; Curcumin; Disease Models, Animal; Huntingtin Protein; Huntington Disease; Insecticides; Mice; NADPH Oxidases; Oxidative Stress; Reactive Oxygen Species

2017
Head-to-Head Comparison of Anti-Inflammatory Performance of Known Natural Products In Vitro.
    PloS one, 2016, Volume: 11, Issue:5

    Inflammation is an important therapeutic target. Due to their potency, steroidal drugs dominate the current treatment of inflammatory disorders. However, steroidal drugs can also exert a broad range of side effects and appear not always effective. This calls for the development of alternative drugs with a different mechanism of action, which are likely to be found in the field of natural products (NPs). For many NPs strong anti-inflammatory effects have been described, but usually investigating a single compound in a single assay. In this study, eight promising NPs were selected and tested against the strong anti-inflammatory drug prednisolone. For this head-to-head comparison, in vitro assays were used which represent different pathways of the inflammatory response: TNF-α and IL-6 expression by macrophages, IL-8 expression by colon epithelial cells, ROS production in polymorphonuclear leukocytes and platelet activation in whole blood. Performance profiles were established which allowed us to identify curcumin, berberine chloride and epigallocatechin gallate as potential alternatives for prednisolone or other glucocorticoids in inflammation.

    Topics: Acetophenones; Animals; Anti-Inflammatory Agents; Berberine; Biological Products; Blood Platelets; Caco-2 Cells; Catechin; Cell Line; Curcumin; Humans; Interleukin-6; Interleukin-8; Macrophages; Mice; Neutrophils; Platelet Activation; Pravastatin; Prednisolone; Primary Cell Culture; Reactive Oxygen Species; Stilbenes; Tumor Necrosis Factor-alpha

2016
Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.
    Neuroscience letters, 2014, Feb-07, Volume: 560

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the main enzymes that produce oxidative stress, which plays an important role in painful diabetic neuropathy. Curcumin has been reported to exert an antinociceptive effect in a rat model of diabetic neuropathy by suppressing oxidative stress in the spinal cord. However, it remains unknown whether the mechanism by which curcumin ameliorates diabetic neuropathy can be attributed to spinal NADPH oxidases. This study was designed to determine the effect of curcumin on diabetic neuropathy and to investigate its precise mechanism in relation to NADPH oxidase-mediating oxidative stress in the spinal cord. Diabetic neuropathy was induced in Sprague-Dawley rats by intraperitoneal injection with 1% streptozotocin (STZ; 60 mg/kg). After the onset of diabetic neuropathy, a subset of the diabetic rats received daily intragastric administrations of curcumin (200mg/kg) or intraperitoneal injections of apocynin (2.5mg/kg) for 14 consecutive days, whereas other diabetic rats received equivalent volumes of normal saline (NS). STZ resulted in diabetic neuropathy with hyperglycemia and a lower paw withdrawal threshold (PWT), accompanied by elevations in the expression of the NADPH oxidase subunits p47(phox) and gp91(phox) and in the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and a reduction in superoxide dismutase (SOD) activity (P<0.05) in the spinal cord. Both curcumin and apocynin ameliorated diabetic neuropathy. In conclusion, curcumin attenuated neuropathic pain in diabetic rats, at least partly by inhibiting NADPH oxidase-mediating oxidative stress in the spinal cord.

    Topics: Acetophenones; Animals; Antioxidants; Body Weight; Curcumin; Diabetic Neuropathies; Hydrogen Peroxide; Hyperalgesia; Male; Malondialdehyde; NADPH Oxidases; Oxidative Stress; Rats, Sprague-Dawley; Spinal Cord; Streptozocin; Superoxide Dismutase

2014
Effect of the o-methyl catechols apocynin, curcumin and vanillin on the cytotoxicity activity of tamoxifen.
    Journal of enzyme inhibition and medicinal chemistry, 2013, Volume: 28, Issue:4

    Apocynin (APO), curcumin (CUR) and vanillin (VAN) are o-methyl catechols widely studied due their antioxidant and antitumour properties. The effect of treatment with these o-methyl catechols on tamoxifen (TAM)-induced cytotoxicity in normal and tumour cells was studied. The cytotoxicity of TAM on red blood cells (RBC) was performed by haemoglobin or K(+)release and on polymorphonuclear leukocytes (PMNs) by trypan blue dye exclusion method. Cytotoxic activity was assessed in human chronic myeloid leukemia (K562) cell line by (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide). According the release of haemoglobin and K(+), the CUR showed a decrease in TAM cytotoxicity on RBC; however, in PMN, APO, CUR and VAN showed increased of these cells viability. VAN presented the highest cytotoxicity on K562 cells, followed by APO and CUR. These results point the potential therapeutic value of these o-methyl catechols with TAM, particularly of CUR, which potentiates the cytotoxic effects of TAM on K562 cells and also decreases TAM-associated cytotoxicity on RBC and PMN.

    Topics: Acetophenones; Antineoplastic Agents; Benzaldehydes; Cell Survival; Curcumin; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Erythrocytes; Humans; K562 Cells; Molecular Structure; Neutrophils; Structure-Activity Relationship; Tamoxifen; Tumor Cells, Cultured

2013
Activation and induction of cytosolic phospholipase A2 by TNF-α mediated through Nox2, MAPKs, NF-κB, and p300 in human tracheal smooth muscle cells.
    Journal of cellular physiology, 2011, Volume: 226, Issue:8

    Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.

    Topics: Acetophenones; Acetylation; Acetylcysteine; Cell Line; Curcumin; Dinoprostone; E1A-Associated p300 Protein; Enzyme Inhibitors; Free Radical Scavengers; Histones; Humans; Membrane Glycoproteins; Metabolic Networks and Pathways; Mitogen-Activated Protein Kinases; Myocytes, Smooth Muscle; NADPH Oxidase 2; NADPH Oxidases; NF-kappa B; Onium Compounds; Phospholipases A2; Phosphorylation; Sesquiterpenes; Sesquiterpenes, Guaiane; Trachea; Tumor Necrosis Factor-alpha

2011
Cigarette smoke extract induces cytosolic phospholipase A2 expression via NADPH oxidase, MAPKs, AP-1, and NF-kappaB in human tracheal smooth muscle cells.
    Free radical biology & medicine, 2009, Apr-01, Volume: 46, Issue:7

    Up-regulation of cytosolic phospholipase A2 (cPLA2) by cigarette smoke extract (CSE) may play a critical role in airway inflammatory diseases. However, the mechanisms underlying CSE-induced cPLA2 expression in human tracheal smooth muscle cells (HTSMCs) remain unknown. CSE induced cPLA2 protein and mRNA expression, and ROS generation was attenuated by pretreatment with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), or inhibitors of NADPH oxidase (diphenyleneiodonium chloride, apocynin) and transfection with p47phox siRNA, suggesting that CSE-induced cPLA2 expression was mediated through NADPH oxidase activation and ROS production in HTSMCs. Furthermore, CSE-induced cPLA2 expression was attenuated by pretreatment with the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK (SP600125), which were further confirmed by transfection with siRNAs of JNK1, p42, and p38 to down-regulate the expression of respective proteins and reduce cPLA2 expression. Induction of cPLA2 by CSE was attenuated by selective inhibitors of NF-kappaB (helenalin) and AP-1 (curcumin). Moreover, promoter assays revealed that increases of cPLA2, NF-kappaB, and AP-1 luciferase activities stimulated by CSE were attenuated by these inhibitors. These results suggest that in HTSMCs, CSE induced NADPH oxidase activation leading to phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK. These reactions induced nuclear transcription NF-kappaB and AP-1 activities which were essential for CSE-induced cPLA2 gene expression.

    Topics: Acetophenones; Acetylcysteine; Butadienes; Cells, Cultured; Curcumin; Cytoplasm; Gene Expression Regulation, Enzymologic; Humans; MAP Kinase Kinase Kinases; Myocytes, Smooth Muscle; NADPH Oxidases; NF-kappa B; Nitriles; Onium Compounds; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phospholipases A2; RNA, Small Interfering; Sesquiterpenes; Sesquiterpenes, Guaiane; Smoking; Trachea; Transcription Factor AP-1; Transcriptional Activation

2009