curcumin and 3-3--diindolylmethane

curcumin has been researched along with 3-3--diindolylmethane* in 7 studies

Reviews

3 review(s) available for curcumin and 3-3--diindolylmethane

ArticleYear
Therapeutic Potential of Targeting Wnt/β-Catenin Pathway in Treatment of Colorectal Cancer: Rational and Progress.
    Journal of cellular biochemistry, 2017, Volume: 118, Issue:8

    Wnt/β-catenin pathway is one of the main/frequent dysregulated pathways in several tumor types, including colon cancer. Aberrant activation of this pathway is associated with cell proliferation, invasive behaviors, and cell resistance, suggesting its potential value as a therapeutic target in treatment of CRC. Several agents have been developed for targeting of this pathway (e.g, natural agents: curcumin, 3,3-diindolylmethane, phytoestrogen; Synthetic/small Wnt inhibitors: Rofecoxib; PRI-724, CWP232291; and monoclonal antibody against frizzled receptors, Vanituctumab). This review summarizes the current knowledge about the therapeutic potential of targeting Wnt pathway with particular emphasis on preclinical/clinical studies in treatment of colorectal cancer. J. Cell. Biochem. 118: 1979-1983, 2017. © 2017 Wiley Periodicals, Inc.

    Topics: Animals; Antineoplastic Agents; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Cell Proliferation; Colorectal Neoplasms; Curcumin; Gene Expression Regulation, Neoplastic; Humans; Indoles; Lactones; Molecular Targeted Therapy; Pyrimidinones; Signal Transduction; Sulfones; Wnt Proteins

2017
The bounty of nature for changing the cancer landscape.
    Molecular nutrition & food research, 2016, Volume: 60, Issue:6

    The landscape of cancer has changed considerably in past several years, due mainly to aggressive screening, accumulation of data from basic and epidemiological studies, and the advances in translational research. Natural anticancer agents have always been a part and parcel of cancer research. The initial focus on natural anticancer agents was in context of their cancer chemopreventive properties but their ability to selectively target oncogenic signaling pathways has also been recognized. In light of the rapid advancements in our understanding of the role of microRNAs, cancer stem cells, and epigenetic events in cancer initiation and progression, a number of natural anticancer agents are showing promise in vitro, in vivo as well as in preclinical studies. Moreover, parent structures of natural agents are being extensively modified with the hope of improving efficacy, specificity, and bioavailability. In this article, we focus on two natural agents, 3,3'-diindolylmethane and garcinol, along with 3,4-difluorobenzo curcumin, a synthetic analog of natural agent curcumin. We showcase how these anticancer agents are changing cancer landscape by modulating novel microRNAs, epigenetic factors, and cancer stem cell markers. These activities are relevant and being appreciated for overcoming drug resistance and inhibition of metastases, the two overarching clinical challenges in modern medicine.

    Topics: Antineoplastic Agents; Biomarkers, Tumor; Cell Line, Tumor; Curcumin; Dietary Supplements; Epigenesis, Genetic; Epithelial-Mesenchymal Transition; Humans; Indoles; MicroRNAs; Neoplasms; Neoplastic Stem Cells; Signal Transduction; Terpenes

2016
Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals.
    Acta pharmacologica Sinica, 2007, Volume: 28, Issue:9

    There is growing interest in the ability of phytochemicals to prevent chronic diseases, such as cancer and heart disease. However, some of these agents have poor bioavailability and many of the in-depth studies into their mechanisms of action have been carried out in vitro using doses which are unachievable in humans. In order to optimize the design of chemopreventive treatment, it is important to determine which of the many reported mechanisms of action are clinically relevant. In this review we consider the physiologically achievable doses for a few of the best studied agents (indole-3-carbinol, diindolylmethane, curcumin, epigallocatechin-3-gallate and resveratrol) and summarize the data derived from studies using these low concentrations in cell culture. We then cite examples of in vitro effects which have been observed in vivo. Finally, the ability of agent combinations to act synergistically or antagonistically is considered. We conclude that each of the compounds shows an encouraging range of activities in vitro at concentrations which are likely to be physiologically relevant. There are also many examples of in vivo studies which validate in vitro observations. An important consideration is that combinations of agents can result in significant activity at concentrations where any single agent is inactive. Thus, for each of the compounds reviewed here, in vitro studies have provided useful insights into their mechanisms of action in humans. However, data are lacking on the full range of activities at low doses in vitro and the benefits or otherwise of combinations in vivo.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Catechin; Curcumin; Humans; Indoles; Neoplasms; Resveratrol; Stilbenes

2007

Other Studies

4 other study(ies) available for curcumin and 3-3--diindolylmethane

ArticleYear
Sulindac, 3,3'-diindolylmethane and curcumin reduce carcinogenesis in the Pirc rat, an Apc-driven model of colon carcinogenesis.
    BMC cancer, 2015, Sep-03, Volume: 15

    Recently, we showed that Sulindac (SU; 320 ppm) reduces precancerous lesions in the colon of Pirc rats, mutated in the Apc gene. Surprisingly, previous data in Apc-mutated mice showed that SU, with reported efficacy in Familial Adenomatous Polyposis (FAP), increases colon carcinogenesis. Therefore, we assessed the effect of SU 320 ppm in a long-term carcinogenesis experiment in Pirc rats. Moreover, since side effects of SU hamper its chronic use and a combination of drugs could be more effective and less toxic than single agents, we also studied whether two natural compounds, 3,3'-diindolylmethane (DIM; 250 ppm) and curcumin (CUR; 2000 ppm), with or without lower doses of SU could affect carcinogenesis. Pirc rats were fed an AIN76 diet containing SU, DIM and CUR and sacrificed at 8 months of age to measure intestinal tumours. Apoptosis and proliferation in the normal colon mucosa, as well as gene expression profile were studied. Colon tumours were significantly reduced by SU 320 ppm (62 % reduction over Controls), by DIM and CUR without or with SU 80 and 160 ppm (50, 53 and 58 % reduction, respectively) but not by SU 80 ppm alone. Total tumours (colon and small intestine) were reduced by SU (80 and 320 ppm) and by DIM and CUR. Apoptosis in the normal mucosa was significantly increased by SU 320 ppm, and slightly increased by DIM and CUR with or without SU. A slight reduction in Survivin-Birc5 expression was observed with all the treatments compared to Controls. Proliferative activity was not varied. The results on SU reinforce the validity of Pirc rats to identify chemopreventive products. Moreover, the efficacy of the DIM and CUR combination to lower colon tumours, suggests an alternative strategy to be exploited in patients at risk.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Chemoprevention; Colonic Neoplasms; Curcumin; Diet; Disease Models, Animal; Drug Evaluation, Preclinical; Drug Therapy, Combination; Genes, APC; Indoles; Intestinal Mucosa; Rats; Rats, Inbred F344; Real-Time Polymerase Chain Reaction; Sulindac

2015
Modulation of aflatoxin B1-mediated genotoxicity in primary cultures of human hepatocytes by diindolylmethane, curcumin, and xanthohumols.
    Toxicological sciences : an official journal of the Society of Toxicology, 2009, Volume: 112, Issue:2

    This study employed cultured human primary hepatocytes to investigate the ability of the putative chemopreventive phytochemicals curcumin (CUR), 3,3'-diindolylmethane (DIM), isoxanthohumol (IXN), or 8-prenylnaringenin (8PN) to reduce DNA adduct formation of the hepatocarcinogen aflatoxin B1 (AFB). Following 48 h of pretreatment, DIM and 8PN significantly increased AFB-DNA adduct levels, whereas CUR and IXN had no effect. DIM greatly enhanced the transcriptional expression of cytochrome P450 (CYP) 1A1 and CYP1A2 mRNA. Glutathione S-transferase mRNAs were not increased by any of the treatments. In vitro enzyme activity assays demonstrated that 8PN and DIM, but not CUR or IXN, inhibited human CYP1A1, CYP1A2, and CYP3A4 activities. To distinguish between treatment effects on transcription versus direct effects on enzyme activity for DIM, we evaluated the effects of pretreatment alone (transcriptional activation) versus cotreatment alone (enzyme inhibition). The results demonstrated that effects on gene expression, but not catalytic activity, are responsible for the observed effects of DIM on AFB-DNA adduct formation. The increase in AFB-DNA damage following DIM treatment may be explained through its substantial induction of CYP1A2 and/or its downregulation of GSTM1, both of which were significant. The increase in DNA damage by DIM raises potential safety risks for dietary supplements of DIM and its precursor indole-3-carbinol.

    Topics: Aflatoxin B1; Cells, Cultured; Curcumin; Cytochrome P-450 Enzyme System; DNA Adducts; Flavonoids; Gene Expression Regulation, Enzymologic; Humans; Indoles; Mutagens; Polymerase Chain Reaction; Propiophenones; RNA, Messenger

2009
Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells.
    Molecular cancer therapeutics, 2007, Volume: 6, Issue:11

    Dietary phytochemicals exhibit chemopreventive potential in vivo through persistent low-dose exposures, whereas mechanistic in vitro studies with these agents generally use a high-dose single treatment. Because the latter approach is not representative of an in vivo steady state, we investigated antitumor activity of curcumin, 3,3'-diindolylmethane (DIM), epigallocatechin gallate (EGCG), genistein, or indole-3-carbinol (I3C) in breast cancer MDA-MB-231 cells, exposed in long-term culture to low concentrations, achievable in vivo. Curcumin and EGCG increased cell doubling time. Curcumin, EGCG, and I3C inhibited clonogenic growth by 55% to 60% and induced 1.5- to 2-fold higher levels of the basal caspase-3/7 activity. No changes in expression of cell cycle-related proteins or survivin were found; however, I3C reduced epidermal growth factor receptor expression, contributing to apoptosis. Because some phytochemicals are shown to inhibit DNA and histone modification, modulation of expression by the agents in a set of genes (cadherin-11, p21Cip1, urokinase-type plasminogen activator, and interleukin-6) was compared with changes induced by inhibitors of DNA methylation or histone deacetylation. The phytochemicals modified protein and/or RNA expression of these genes, with EGCG eliciting the least and DIM the most changes in gene expression. DIM and curcumin decreased cadherin-11 and increased urokinase-type plasminogen activator levels correlated with increased cell motility. Curcumin, DIM, EGCG, and genistein reduced cell sensitivity to radiation-induced DNA damage without affecting DNA repair. This model has revealed that apoptosis and not arrest is likely to be responsible for growth inhibition. It also implicated new molecular targets and activities of the agents under conditions relevant to human exposure.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Biomarkers, Tumor; Catechin; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Curcumin; Diet; DNA Damage; Gene Expression Regulation, Neoplastic; Genistein; Humans; Indoles; Neoplasm Proteins; Neoplasms; RNA, Neoplasm; Time Factors

2007
Phytochemical-induced changes in gene expression of carcinogen-metabolizing enzymes in cultured human primary hepatocytes.
    Xenobiotica; the fate of foreign compounds in biological systems, 2004, Volume: 34, Issue:7

    1. The naturally occurring compounds curcumin (CUR), 3,3'-diindolylmethane (DIM), isoxanthohumol (IXN), 8-prenylnaringenin (8PN), phenethyl isothiocyanate (PEITC) and sulforaphane (SFN) protect animals against chemically induced tumours. Putative chemoprotective mechanisms include modulated expression of hepatic biotransformation enzymes. However, few, if any, studies have used human primary cells as test models. 2. The present study investigated the effects of these phytochemicals on the expression of four carcinogenesis-relevant enzymes--cytochrome P450 (CYP)1A1 and 1A2, NAD(P)H:quinone oxidoreductase (NQO1) and glutathione S-transferase A1 (GSTA1)--in primary cultures of freshly isolated human hepatocytes. 3. Quantitative RT-PCR analyses demonstrated that CYP1A1 was up-regulated by PEITC and DIM in a dose-dependent manner. CYP1A2 transcription was significantly activated following DIM, IXN, 8PN and PEITC treatments. DIM exhibited a remarkably effective induction response of CYP1A1 (474-, 239- and 87-fold at 50, 25 and 10 microM, respectively) and CYP1A2 (113-, 70- and 31-fold at 50, 25 and 10 microM, respectively), that was semiquantitatively reflected in protein levels. NQO1 expression responded to PEITC (11 x at 25 microM), DIM (4.5 x at 50 microM) and SFN (5 x at 10 microM) treatments. No significant effects on GSTA1 transcription were seen. 4. The findings show novel and unexpected effects of these phytochemicals on the expression of human hepatic biotransformation enzymes that play key roles in chemical-induced carcinogenesis.

    Topics: Anticarcinogenic Agents; Carcinogens; Carrier Proteins; Curcumin; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Enzymes; Flavanones; Gene Expression Regulation; Glutathione Transferase; Hepatocytes; Humans; Inactivation, Metabolic; Indoles; Isothiocyanates; NAD(P)H Dehydrogenase (Quinone); Plants; Sulfoxides; Thiocyanates

2004