curcumin and 1-naphthol

curcumin has been researched along with 1-naphthol* in 2 studies

Other Studies

2 other study(ies) available for curcumin and 1-naphthol

ArticleYear
Copper-induced peroxidation of phosphatidylserine-containing liposomes is inhibited by nanomolar concentrations of specific antioxidants.
    Chemistry and physics of lipids, 2007, Volume: 150, Issue:2

    Copper-induced peroxidation of liposomal palmitoyllinoleoyl-phosphatidylcholine (PLPC) is inhibited by alpha-tocopherol at micromolar concentrations. In our previous study we found that when the liposomes contain phosphatidylserine (PS), nanomolar concentrations of Toc were sufficient to inhibit peroxidation. In an attempt to gain understanding of the origin of this extreme antioxidative potency, we tested the antioxidative potency of 36 additional antioxidants and the dependence of their potency on the presence of PS in the liposomes. The results of these studies reveal that only 11 of the tested antioxidants possess similar antioxidative potency to that of Toc. These include trolox, butylated hydroxytoluene (BHT), curcumin, nordihydroguaiaretic acid (NDGA), diethylstilbestrol (DES), 2 of the 13 tested flavonoids (luteolin and 7,3',4'-trihydroxyflavone; T-414), alpha-naphthol, 1,5-, 1,6- and 1,7-dihydroxynaphthalenes (DHNs). Propyl gallate (PG), methyl syringate, rosmarinic acid, resveratrol, other flavonoids, as well as beta-naphthol, 1,2-, 1,3-, 1,4-, 2,3-, 2,6-, and 2,7-DHNs were either moderately antioxidative or pro-oxidative. For liposomes made of PLPC (250 microM) and PS (25 microM) the "lag" preceding copper-induced peroxidation (5 microM copper) was doubled upon addition of 30-130nM of the "super-active" antioxidants. We propose that the mechanism responsible for the extreme antioxidative potency against copper-induced peroxidation in PS-containing liposomes involves replenishment of the antioxidant in a ternary PS-copper-antioxidant complex. Based on structure-activity relationship of the 37 tested antioxidants, the "super-antioxidative potency" is attributed to the recycling of relatively stable semiquinone or semiquinone-like radicals.

    Topics: Antioxidants; Butylated Hydroxytoluene; Chromans; Cinnamates; Copper; Curcumin; Depsides; Diethylstilbestrol; Flavonoids; Liposomes; Luteolin; Masoprocol; Nanotechnology; Naphthols; Phenol; Phosphatidylcholines; Phosphatidylserines; Rosmarinic Acid; Structure-Activity Relationship

2007
Turmeric and curcumin modulate the conjugation of 1-naphthol in Caco-2 cells.
    Biological & pharmaceutical bulletin, 2006, Volume: 29, Issue:7

    Turmeric, the powdered dry rhizome of the Curcuma longa plant, and curcumin, the major anti-oxidant constituent of turmeric, have been shown to possess chemopreventive activity. To elucidate the possible interaction of turmeric and curcumin with conjugation reactions, which in many cases are involved in the activation of procarcinogens, we measured their effects in the conjugation of 1-naphthol in Caco-2 cells, a human colon carcinoma cell line, within a 24 h period. Turmeric exhibits inhibitory activity toward both sulfo- and glucuronosyl conjugations of 1-naphthol at approximately the same levels (IC(50)=0.24 and 0.29 mg/ml, respectively). Curcumin inhibits sulfo-conjugation at lower concentrations (IC(50)=9.7 microg/ml), but only showed weak inhibition toward glucuronosyl conjugation of 1-naphthol in Caco-2 cells. In addition, turmeric was found to strongly inhibit in vitro phenol sulfotransferase (SULT) activity and demonstrate moderate inhibitory properties against UDP-glucuronosyl transferase (UGT) activity in Caco-2 cells (IC(50)=0.17 mg/ml and 0.62 mg/ml, respectively). Curcumin also strongly inhibits in vitro phenol sulfotransferase activity with an IC(50) of 2.4 microg/ml. Moreover, and in contrast to the moderate inhibition of UGT activity by turmeric and curcumin, both induce the expression of the UGT1A1 and UGT1A6 genes, revealed by real-time PCR analysis. These findings are indicative of a possible interaction of both turmeric and curcumin with conjugation reactions in the human intestinal tract and colon. This in turn may affect the bioavailability of therapeutic drugs and toxicity levels of environmental chemicals, particularly procarcinogens.

    Topics: Adenocarcinoma; Cell Line, Tumor; Colonic Neoplasms; Curcuma; Curcumin; Gene Expression Regulation, Enzymologic; Glucuronides; Humans; Kinetics; Naphthols

2006