cupferron and nitroxyl
cupferron has been researched along with nitroxyl* in 2 studies
Other Studies
2 other study(ies) available for cupferron and nitroxyl
Article | Year |
---|---|
Synthesis and characterization of lithium oxonitrate (LiNO).
The oxonitrate(1-) anion (NO(-)), the one-electron reduction product of nitric oxide and conjugate base of HNO, has not been synthesized and isolated due to the inherent reactivity of this anion. The large scale synthesis and characterization of a stable NO(-) salt is described here. The lithium salt of oxonitrate (LiNO) was formed by the deprotonation of N-hydroxybenzenesulfonamide with phenyllithium in aprotic, deoxygenated conditions. LiNO exhibited antiferromagnetic paramagnetism as determined by SQUID magnetometry, consistent with a triplet ground state of NO(-). LiNO reacted with HCl to yield nitrous oxide consistent with HNO formation and dimerization. LiNO consumed O(2) in a pH-dependent manner to initially produce peroxynitrite and eventually nitrite. Consistent with the reduction potential of NO, LiNO exhibited an oxidation potential of approximately +0.80 V as determined by reactions with a series of viologen electron acceptors. LiNO also reacted with ferric tetraphenylporphyrin chloride (Fe(TPP)Cl), potassium tetracyanonickelate (K(2)Ni(CN)(4)) and nitrosobenzene in a manner that is identical to other HNO/NO(-) donors. We conclude that the physical and chemical characteristics of LiNO are indistinguishable from the experimentally and theoretically derived data on oxonitrate (1-) anion. The bulk synthesis and isolation of a stable (3)NO(-) salt described here allow the chemical and physical properties of this elusive nitrogen oxide to be thoroughly studied as this once elusive nitrogen oxide is now attainable. Topics: Cyanides; Hydrochloric Acid; Lithium Compounds; Nickel; Nitric Oxide Donors; Nitrogen Oxides; Nitrosamines; Nitroso Compounds; Nitrous Oxide; Oxidants; Oxidation-Reduction; Oxygen; Porphyrins; Sulfonamides; Viologens | 2013 |
The reaction of nitroxyl (HNO) with nitrosobenzene gives cupferron (N-nitrosophenylhydroxylamine).
Nitroxyl (HNO), a penultimate product in the NOS-catalyzed conversion of L-arginine to L-citrulline, generated from Angeli's salt (AS) was determined by trapping it with nitrosobenzene (NB) to produce cupferron. The cupferron thus produced was characterized by complexation with Fe3+, Al3+, Cu2+, or Sn2+. UV/VIS spectra of the solubilized (in CHCl3) precipitates formed from NB and nitroxyl generated from AS in the presence of the iron, aluminum, copper, or tin salts were identical to those of their corresponding cupferron complexes. The identities of the Fe3+ and Cu2+ complexes formed from NB and HNO were further confirmed by their identical retention times on HPLC when compared to authentic Fe3+ and Cu2+ cupferron complexes. It was possible to detect 5 x 10(-6) M of the cupferron Fe3+ complex spectrophotometrically and to measure its production from the nitroxyl generators AS and methanesulfohydroxamic acid (MSHA) in the presence of 10(-4) M NB. The yield of cupferron was 51 and 62% of the amount of nitroxyl possible from AS or MSHA, respectively, after taking into account the relative rates of nitroxyl generation from these donors. Topics: Chromatography, High Pressure Liquid; Hydroxamic Acids; Nitrogen Oxides; Nitrosamines; Nitroso Compounds; Salts; Spectrophotometry, Ultraviolet | 1998 |