cryptoxanthins and violaxanthin

cryptoxanthins has been researched along with violaxanthin* in 7 studies

Other Studies

7 other study(ies) available for cryptoxanthins and violaxanthin

ArticleYear
Marigold carotenoids: Much more than lutein esters.
    Food research international (Ottawa, Ont.), 2019, Volume: 119

    Topics: Beta-Cryptoxanthin; Calendula; Carotenoids; Cryptoxanthins; Esters; Fatty Acids; Flowers; Lutein; Tandem Mass Spectrometry; Xanthine; Xanthophylls; Zeaxanthins

2019
The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-β2 gene.
    Food research international (Ottawa, Ont.), 2017, Volume: 100, Issue:Pt 2

    We investigated the transcriptional regulation of six genes involved in carotenoid biosynthesis, together with the carotenoid accumulation during postharvest ripening of three different papaya genotypes of contrasting pulp color. Red-pulp genotype (RPG) showed the lowest content of yellow pigments (YP), such as β-cryptoxanthin, zeaxanthin, and violaxanthin, together with the lowest relative expression levels (REL) of CpLCY-β2 and CpCHX-β genes. On the contrary, the yellow-pulp genotype (YPG) showed the highest content of YP and the highest REL of CpLCY-β2 and CpCHX-β genes. Interestingly, the orange-pulp genotype (OPG) showed intermediate content of YP and intermediate REL of CpLCY-β2 and CpCHX-β genes. The highest content of β-carotene shown by OPG despite having an intermediate REL of the CpLCY-β2 genes, suggests a post-transcriptional regulation. Thus, the transcriptional level of the genes, directing the carotenoid biosynthesis pathway, can partially explain the accumulation of carotenoids during the postharvest ripening in C. papaya genotypes of contrasting pulp color.

    Topics: beta Carotene; Beta-Cryptoxanthin; Carica; Carotenoids; Citrus sinensis; Color; Fruit; Gene Expression Regulation, Plant; Genes, Plant; Genotype; Lycopene; Pigmentation; Plant Proteins; RNA, Plant; Xanthophylls; Zeaxanthins

2017
Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges.
    Plant science : an international journal of experimental plant biology, 2014, Volume: 227

    Carotenoid accumulation and biosynthetic gene expression levels during fruit maturation were compared between ordinary Valencia (VAL) and its more deeply colored mutant Rohde Red Valencia orange (RRV). The two cultivars exhibited different carotenoid profiles and regulatory mechanisms in flavedo and juice sacs, respectively. In flavedo, there was uncoordinated carotenoid accumulation and gene expression in RRV during green stages, which might be related to the expression of certain gene(s) in the MEP (methylerythritol phosphate) pathway. The carotenoid biosynthesis pathway shifting from α,β-xanthophylls to β,β-xanthophylls synthesis occurred in RRV earlier than VAL during orange stages. In juice sacs, the low carotenoid content in both cultivars coincided with low expression of LCYE-Contig03 and LCYE-Contig24 during green stages, suggesting LCYE might be a limiting step for carotenoid accumulation. VAL mainly accumulated violaxanthin, but RRV accumulated β-cryptoxanthin and violaxanthin during orange stages, which corresponded to differences in juice color. Several upstream genes (PDS-Contig17, LCYB-Contig19, and ZDS members) and a downstream gene (ZEP) were expressed at higher levels in RRV than VAL, which might be responsible for greater accumulation of β-cryptoxanthin and violaxanthin in RRV, respectively.

    Topics: Carotenoids; Citrus sinensis; Cryptoxanthins; Fruit; Gene Expression; Gene Expression Regulation, Plant; Genes, Plant; Humans; Plant Proteins; Species Specificity; Xanthophylls

2014
Dietary carotenoids in normal and pathological tissues of corpus uteri.
    Folia histochemica et cytobiologica, 2008, Volume: 46, Issue:3

    Carotenoids and retinyl esters are the source of vitamin A in the human body and its natural derivatives takes part in the regulation of cell replication and differentiation in the human endometrium, may induce the leiomyoma growth and has a role in differentiation of endometrial adenocarcinoma. The aim of the study was to demonstrate the presence of carotenoids in tissues from the normal uterus and from various tumors of the uterine corpus, as well as to compare the total content, major carotenoids and % of carotenoids belonging to the provitamin A group between the tissues examined. Using three independent methods of chromatography (CC, TLC, HPLC) we analysed 140 human samples. We identified 13 carotenoids belonging to the eg. provitamin A group and epoxy carotenoids. In all the samples beta-carotene, beta-cryptoxanthin, lutein, neoxanthin, violaxanthin and mutatoxanthin were isolated. In normal tissues, the mean carotenoid content was the highest in the follicular phase endometrium (9.9 microg/g), while the highest percentage of carotenoids belonging to provitamin A group was found in the luteal phase (18.2%). In the pathological group, the highest mean values were demonstrated for epithelial lesions (8.0 microg/g), and within this group - in endometrioid adenocarcinoma (10.8 microg/g). In both groups, violaxanthin, beta-cryptoxanthin, lutein epoxide and mutatoxanthin were the predominant carotenoids. We have demonstrated that all uterine tissues show a concentration of beta-carotene and beta-cryptoxanthin, being the source of vitamin A. The highest total values of carotenoids obtained in the group of endometrioid adenocarcinoma seem to confirm certain enzymatic defects in carotenoid metabolism in the course of the neoplastic process or some metabolic modifications. The finding of astaxanthin - the major antioxidant among carotenoids - in 63% of tissues examined is also significant.

    Topics: Adult; Aged; Antioxidants; beta Carotene; Carotenoids; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Cryptoxanthins; Diet; Female; Humans; Lutein; Middle Aged; Uterine Neoplasms; Uterus; Xanthophylls

2008
The role of lutein in the acclimation of higher plant chloroplast membranes to suboptimal conditions.
    Physiologia plantarum, 2008, Volume: 134, Issue:1

    Two mutants of Arabidopsis thaliana deficient in lutein have been investigated with respect to their responses to growth under a range of suboptimal conditions. The first mutant, lut1, was enriched in violaxanthin, antheraxanthin, zeaxanthin and zeinoxanthin compared with the wild-type (WT). In the second mutant, lut2, the lack of lutein was compensated for only by an increase in xanthophyll cycle (XC) carotenoids. Upon transfer of plants grown under optimal conditions to high light (HL), drought or HL + drought, both mutants acclimated during several days to the new conditions to the same extent as the WT. In contrast, transfer to chilling conditions (6 degrees C) for 6 days induced responses that were different between WT and mutants and between the mutants themselves. In contrast to the WT, the lut2 mutant in particular exhibited a large increase in the Chl a/b ratio and the XC pool size, extensive de-epoxidation and an enhanced extent of non-photochemical quenching. It is suggested that although the role of lutein in the structure and organisation of the light-harvesting complexes can be fulfilled by other xanthophylls under excess light conditions at optimal temperatures, this is not the case at low temperature.

    Topics: Acclimatization; Arabidopsis; beta Carotene; Chloroplasts; Cryptoxanthins; Droughts; Intracellular Membranes; Light; Lutein; Mutation; Xanthophylls; Zeaxanthins

2008
Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model.
    Planta, 2001, Volume: 212, Issue:3

    Recently, we reported the presence of the violaxanthin-antheraxanthin-zeaxanthin cycle in diatoms, and showed that violaxanthin is the putative precursor of both diadinoxanthin and fucoxanthin in the diatom Phaeodactylum tricornutum Bohlin (M. Lohr and C. Wilhelm, 1999, Proc. Natl. Acad. Sci. USA 96: 8784-8789). In the present study, two possible intermediates in the synthesis of violaxanthin from beta-carotene were identified in P. tricornutum, namely beta-cryptoxanthin and beta-cryptoxanthin epoxide. In low light, the latter pigment prevails, but in high light beta-cryptoxanthin accumulates, probably as the result of an increased activity of the xantophyll-cycle de-epoxidase. The apparent kinetics of several xanthophyll conversion steps were determined for P. tricornutum and Cyclotella meneghiniana Kuitzing. The experimentally determined conversion rates were used to evaluate the hypothetical pathway of xanthophyll synthesis in diatoms. For this purpose a mathematical model was developed which allows the calculation of theoretical rates of pigment conversion for microalgae under steady-state growth conditions. A comparison between measured and calculated conversion rates agreed well with the proposal of a sequential synthesis of fucoxanthin via violaxanthin and diadinoxanthin. The postulation of zeaxanthin as an obligatory intermediate in the synthesis of violaxanthin, however, resulted in large discrepancies between the measured and calculated rates of its epoxidation. Instead of zeaxanthin, beta-cryptoxanthin epoxide may be involved in the biosynthesis of violaxanthin in diatoms.

    Topics: Antioxidants; beta Carotene; Carotenoids; Chromatography, High Pressure Liquid; Cryptoxanthins; Diatoms; Dithioerythritol; Epoxy Compounds; Herbicides; Light; Lutein; Models, Biological; Pigments, Biological; Pyridazines; Sulfhydryl Reagents; Xanthophylls; Zeaxanthins

2001
Structure-reactivity relationship in the oxidation of carotenoid pigments of the pepper (Capsicum annuum L.).
    Journal of agricultural and food chemistry, 2001, Volume: 49, Issue:10

    The relationship between the degradation rate and structure of each pigment of the pepper carotenoid profile was studied in mixtures of dehydrated fruit with lipid substrates of differing degrees of unsaturation and in different proportions (20 and 40%). The differences in structural nature of the carotenoids present in the pepper fruit produce a variable rate of oxidation, resulting in nonuniform degradation. The yellow xanthophylls and beta-carotene have the highest rates of oxidation, with the ketocarotenoids and violaxanthin degrading at lower rates. Autoxidation is greater or lesser depending on the functional groups, which stabilize the radical intermediaries of the reaction. The behavior of capsanthin and capsorubin is that expected of carotenoids having structures that include keto groups: a markedly greater stability to autoxidation processes. This increases their antioxidant capacity, adding to their beneficial impact by reducing the proliferation of radical processes, which are detrimental to health.

    Topics: beta Carotene; Capsicum; Carotenoids; Chromatography, High Pressure Liquid; Cryptoxanthins; Esterification; Kinetics; Molecular Structure; Oxidation-Reduction; Structure-Activity Relationship; Xanthophylls; Zeaxanthins

2001