cr4056 has been researched along with 2-(2-benzofuranyl)-2-imidazoline* in 3 studies
3 other study(ies) available for cr4056 and 2-(2-benzofuranyl)-2-imidazoline
Article | Year |
---|---|
Effects of imidazoline I2 receptor agonists on reserpine-induced hyperalgesia and depressive-like behavior in rats.
Pharmacotherapies for fibromyalgia treatment are lacking. This study examined the antinociceptive and antidepressant-like effects of imidazoline I2 receptor (I2R) agonists in a reserpine-induced model of fibromyalgia in rats. Rats were treated for 3 days with vehicle or reserpine. The von Frey filament test was used to assess the antinociceptive effects of I2 receptor agonists, and the forced swim test was used to assess the antidepressant-like effects of these drugs. 2-BFI (3.2-10 mg/kg, intraperitoneally), phenyzoline (17.8-56 mg/kg, intraperitoneally), and CR4056 (3.2-10 mg/kg, intraperitoneally) all dose-dependently produced significant antinociceptive effects, which were attenuated by the I2R antagonist idazoxan. Only CR4056 significantly reduced the immobility time in the forced swim test in both vehicle-treated and reserpine-treated rats. These data suggest that I2R agonists may be useful to treat fibromyalgia-related pain and comorbid depression. Topics: Analgesics; Animals; Benzofurans; Depression; Disease Models, Animal; Fibromyalgia; Hyperalgesia; Idazoxan; Imidazoles; Imidazoline Receptors; Imidazolines; Male; Pain; Pain Measurement; Quinazolines; Rats; Rats, Sprague-Dawley; Reserpine | 2019 |
Antinociceptive effects of imidazoline I2 receptor agonists in the formalin test in rats.
The imidazoline I2 receptor is an emerging drug target for analgesics. This study extended previous studies by examining the antinociceptive effects of three I2 receptor agonists (2-BFI, BU224, and CR4056) in the formalin test. The receptor mechanisms and anatomical mediation of I2 receptor agonist-induced antinociception were also examined. Formalin-induced flinching responses (2%, 50 μl) were quantified after treatment with I2 receptor agonists alone or in combination with the I2 receptor antagonist idazoxan. Anatomical mediation was studied by locally administering 2-BFI into the plantar surface or into the right lateral ventricle through cannulae (intracerebroventricular). The locomotor activity was also examined after central (intracerebroventricular) administration of 2-BFI. 2-BFI (1-10 mg/kg, intraperitoneal) and BU224 (1-10 mg/kg, intraperitoneal) attenuated the spontaneous flinching response observed during 10 min (phase 1) and 20-60 min (phase 2) following formalin treatment, whereas CR4056 (1-32 mg/kg, intraperitoneal) decreased only phase 2 flinching response. The I2 receptor antagonist idazoxan attenuated the antinociceptive effects of 2-BFI and BU224 during phase 1, but not phase 2. Peripheral administration of 2-BFI (1-10 mg/kg, intraplantar) to the hind paw of rats had no antinociceptive effect. In contrast, centrally delivered 2-BFI (10-100 µg, intracerebroventricular) dose-dependently attenuated phase 1 and phase 2 flinching at doses that did not reduce the locomotor activity. Together, these data revealed the differential antinociceptive effects of I2 receptor agonists and the differential antagonism profiles by idazoxan, suggesting the involvement of different I2 receptor subtypes in reducing different phases of formalin-induced pain-like behaviors. In addition, the results also suggest the central mediation of I2 receptor agonist-induced antinociceptive actions. Topics: Analgesics; Animals; Behavior, Animal; Benzofurans; Disease Models, Animal; Dose-Response Relationship, Drug; Imidazoles; Imidazoline Receptors; Injections, Intraperitoneal; Injections, Intraventricular; Locomotion; Male; Pain; Pain Measurement; Quinazolines; Rats; Rats, Sprague-Dawley; Time Factors | 2016 |
Discriminative stimulus effects of the novel imidazoline I₂ receptor ligand CR4056 in rats.
This study examined whether a novel imidazoline I₂ receptor ligand CR4056 could serve as a discriminative stimulus and whether it shares similar discriminative stimulus effects with other reported I₂ receptor ligands. Eight male Sprague-Dawley rats were trained to discriminate 10.0 mg/kg CR4056 (i.p.) from vehicle in a two-lever food-reinforced drug discrimination procedure. Once rats acquired the discrimination, substitution and combination studies were conducted to elucidate the underlying receptor mechanisms. All rats acquired CR4056 discrimination after an average of 26 training sessions. Several I₂ receptor ligands (phenyzoline, tracizoline, RS45041, and idazoxan, 3.2-75 mg/kg, i.p.) all occasioned > 80% CR4056-associated lever responding. Other drugs that occasioned partial or no CR4056-associated lever responding included methamphetamine, ketamine, the endogenous imidazoline ligand agmatine, the monoamine oxidase (MAO) inhibitor harmane, the α₂-adrenoceptor agonist clonidine, the μ-opioid receptor agonists morphine and methadone, and the selective I₂ receptor ligands BU224 and 2-BFI. The α₁ adrenoceptor antagonist WB4101, α₂ adrenoceptor antagonist yohimbine and μ-opioid receptor antagonist naltrexone failed to alter the stimulus effects of CR4056. Together, these results show that CR4056 can serve as a discriminative stimulus in rats, which demonstrates high pharmacological specificity and appears to be mediated by imidazoline I₂ receptors. Topics: Animals; Benzofurans; Imidazoles; Imidazoline Receptors; Imidazolines; Male; Methadone; Morphine; Quinazolines; Rats | 2014 |