cps-49 and alvocidib

cps-49 has been researched along with alvocidib* in 2 studies

Other Studies

2 other study(ies) available for cps-49 and alvocidib

ArticleYear
Low doses of CPS49 and flavopiridol combination as potential treatment for advanced prostate cancer.
    Current pharmaceutical biotechnology, 2015, Volume: 16, Issue:6

    Prostate cancer (PCa) still ranks as the second most frequently diagnosed cancer and metastatic castration resistant prostate cancer (CRPC) is a foremost cause of men cancer death around the world. The aim of this work was to investigate the selectivity and efficacy of new drug combinations for CRPC. We combined three compounds: paclitaxel (PTX: taxane that inhibits microtubule polymerization); 2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole- 1,3(2H)-dione (CPS49; redox-reactive thalidomide analog with anti-angiogenic properties) and flavopiridol (flavo: semisynthetic flavonoid that inhibits cyclin dependent kinases). We assessed CPS49-flavo or -PTX combinations cytotoxicity in a panel of PCa cell lines and PC3 xenografts. We found that CPS49 enhanced flavo or PTX cytotoxicity in human PCa cell lines while showed resistance in a non-tumor cell line. Furthermore, xenografts generated by inoculation of human prostate carcinoma PC3 cells in nu/nu mice showed that CPS49/flavo administration reduced tumor growth both after 2 weeks of co-treatment and after 1 week of pretreatment with a low dose of flavo followed by 2 weeks of co-treatment. PTX and CPS49 combination did not significantly reduce tumor growth in PC3 xenografts. Histological analysis of xenograft PC3 tumor samples from CPS49/flavo combination showed extensive areas of necrosis induced by the treatment. RT-qPCR array containing 23 genes from PC3 cells or PC3 xenografts exposed to CPS49/flavo combination showed that this treatment shut down the expression of several genes involved in adhesion, migration or invasion. In summary, the antitumor activity of CPS49 or flavopiridol was improved by the combination of these compounds and using half dose of that previously reported. Hence, CPS49-flavo combination is a promising new alternative for PCa therapy.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Drug Combinations; Flavonoids; Humans; Male; Mice; Mice, Nude; Piperidines; Prostatic Neoplasms; Thalidomide; Treatment Outcome

2015
Combinatorial antileukemic disruption of oxidative homeostasis and mitochondrial stability by the redox reactive thalidomide 2-(2,4-difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) and flavopiridol.
    Molecular pharmacology, 2008, Volume: 74, Issue:3

    2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) is a member of a recently identified class of redox-reactive thalidomide analogs that show selective killing of leukemic cells by increasing intracellular reactive oxygen species (ROS) and targeting multiple transcriptional pathways. Flavopiridol is a semisynthetic flavonoid that inhibits cyclin-dependent kinases and also shows selective lethality against leukemic cells. The purpose of this study is to explore the efficacy and mechanism of action of the combinatorial use of the redox-reactive thalidomide CPS49 and the cyclin-dependent kinase inhibitor flavopiridol as a selective antileukemic therapeutic strategy. In combination, CPS49 and flavopiridol were found to induce selective cytotoxicity associated with mitochondrial dysfunction and elevations of ROS in leukemic cells ranging from additive to synergistic activity at low micromolar concentrations. Highest synergy was observed at the level of ROS generation with a strong correlation between cell-specific cytotoxicity and reciprocal coupling of drug-induced ROS elevation with glutathione depletion. Examination of the transcriptional targeting of CPS49 and flavopiridol combinations reveals that the drugs act in concert to initiate a cell specific transcriptional program that manipulates nuclear factor-kappaB (NF-kappaB), E2F-1, and p73 activity to promote enhanced mitochondrial instability by simultaneously elevating the expression of the proapoptotic factors BAX, BAD, p73, and PUMA while depressing expression of the antiapoptotic genes MCL1, XIAP, BCL-xL, SURVIVIN, and MDM2. The coadministration of CPS49 and flavopiridol acts through coordinate targeting of transcriptional pathways that enforce selective mitochondrial dysfunction and ROS elevation and is therefore a promising new therapeutic combination that warrants further preclinical exploration.

    Topics: Antineoplastic Agents; Apoptosis Regulatory Proteins; Cell Death; Cell Line, Tumor; DNA-Binding Proteins; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Drug Synergism; Flavonoids; Free Radical Scavengers; Glutathione; Homeostasis; Humans; Intracellular Space; Leukemia; Membrane Potential, Mitochondrial; Mitochondria; NF-kappa B; Nuclear Proteins; Organ Specificity; Oxidation-Reduction; Piperidines; Proto-Oncogene Proteins; Reactive Oxygen Species; Thalidomide; Transcription, Genetic; Tumor Suppressor Proteins

2008