Page last updated: 2024-08-26

cp-55,940 and noladin ether

cp-55,940 has been researched along with noladin ether in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (50.00)29.6817
2010's2 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Fowler, CJ; Lambert, DM1
Drmota, T; Elebring, T; Greasley, PJ; Hermansson, NO; Hjorth, S; Larsson, N; Leonova, J; Nilsson, K; Ryberg, E; Sjögren, S1
Aiello, F; Biotti, I; Brizzi, A; Brizzi, V; Cascio, MG; Corelli, F; Di Marzo, V; Frosini, M; Ligresti, A; Pertwee, RG1
Buzard, DJ; Han, S; Jones, RM; Thatte, J1

Reviews

2 review(s) available for cp-55,940 and noladin ether

ArticleYear
The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications.
    Journal of medicinal chemistry, 2005, Aug-11, Volume: 48, Issue:16

    Topics: Amides; Amidohydrolases; Amines; Animals; Arachidonic Acids; Binding Sites; Cannabinoid Receptor Modulators; Drug Design; Endocannabinoids; Esters; Ethers; Glycerides; Humans; Ligands; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Receptors, Cannabinoid

2005
Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists.
    Journal of medicinal chemistry, 2013, Nov-14, Volume: 56, Issue:21

    Topics: Animals; Drug Design; Humans; Ligands; Models, Molecular; Molecular Conformation; Receptor, Cannabinoid, CB2; Structure-Activity Relationship; Substrate Specificity

2013

Other Studies

2 other study(ies) available for cp-55,940 and noladin ether

ArticleYear
The orphan receptor GPR55 is a novel cannabinoid receptor.
    British journal of pharmacology, 2007, Volume: 152, Issue:7

    Topics: Amino Acid Sequence; Animals; Arachidonic Acids; Binding Sites; Binding, Competitive; Cannabidiol; Cannabinoids; Cell Line; Cloning, Molecular; Cyclohexanols; Down-Regulation; Endocannabinoids; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Ligands; Mice; Molecular Sequence Data; Organ Specificity; Polymerase Chain Reaction; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; RNA, Messenger; Signal Transduction; Structure-Activity Relationship

2007
Resorcinol-sn-glycerol derivatives: novel 2-arachidonoylglycerol mimetics endowed with high affinity and selectivity for cannabinoid type 1 receptor.
    Journal of medicinal chemistry, 2011, Dec-22, Volume: 54, Issue:24

    Topics: Animals; Arachidonic Acids; Brain; CHO Cells; Cricetinae; Cricetulus; Cytochrome P-450 CYP3A; Endocannabinoids; Esterases; Esters; Ethers; Glycerides; HEK293 Cells; Humans; In Vitro Techniques; Mice; Molecular Mimicry; Monoglycerides; Phenols; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Resorcinols; Stereoisomerism; Structure-Activity Relationship

2011