Page last updated: 2024-08-26

cp-55,940 and jwh-133

cp-55,940 has been researched along with jwh-133 in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (42.86)29.6817
2010's4 (57.14)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Chavatte, P; Depreux, P; Farce, A; Goossens, JF; Hénichart, JP; Lambert, DM; Millet, R; Muccioli, GG; Poupaert, JH; Stern, E1
Gynther, J; Järvinen, T; Lahtela-Kakkonen, M; Laitinen, JT; Nevalainen, T; Parkkari, T; Poso, A; Salo, OM; Savinainen, JR1
Bosier, B; Depreux, P; Goossens, JF; Hamtiaux, L; Hénichart, JP; Lambert, DM; Millet, R; Muccioli, GG; Poupaert, JH; Stern, E1
Allen, JG; Babij, P; Fotsch, C1
Brogi, S; Corelli, F; Di Marzo, V; Ligresti, A; Mugnaini, C; Pasquini, S; Tafi, A1
Buzard, DJ; Han, S; Jones, RM; Thatte, J1
Carrillo-Salinas, FJ; Fernández-Ruiz, J; Franco, R; Gómez-Cañas, M; Goya, P; Guaza, C; Hurst, DP; Jagerovic, N; Lagartera, L; Morales, P; Navarro, G; Pazos, R; Reggio, PH1

Reviews

2 review(s) available for cp-55,940 and jwh-133

ArticleYear
Emerging targets in osteoporosis disease modification.
    Journal of medicinal chemistry, 2010, Jun-10, Volume: 53, Issue:11

    Topics: Animals; Biomarkers; Bone Density; Bone Resorption; Humans; Osteoporosis

2010
Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists.
    Journal of medicinal chemistry, 2013, Nov-14, Volume: 56, Issue:21

    Topics: Animals; Drug Design; Humans; Ligands; Models, Molecular; Molecular Conformation; Receptor, Cannabinoid, CB2; Structure-Activity Relationship; Substrate Specificity

2013

Other Studies

5 other study(ies) available for cp-55,940 and jwh-133

ArticleYear
Novel 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives as new CB2 cannabinoid receptors agonists: synthesis, pharmacological properties and molecular modeling.
    Journal of medicinal chemistry, 2006, Jan-12, Volume: 49, Issue:1

    Topics: Crystallography, X-Ray; Humans; Models, Molecular; Molecular Structure; Quinolones; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Structure-Activity Relationship

2006
3D-QSAR studies on cannabinoid CB1 receptor agonists: G-protein activation as biological data.
    Journal of medicinal chemistry, 2006, Jan-26, Volume: 49, Issue:2

    Topics: Animals; Cannabinoid Receptor Modulators; Cerebellum; GTP-Binding Proteins; In Vitro Techniques; Ligands; Male; Models, Molecular; Molecular Structure; Quantitative Structure-Activity Relationship; Radioligand Assay; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1

2006
Pharmacomodulations around the 4-oxo-1,4-dihydroquinoline-3-carboxamides, a class of potent CB2-selective cannabinoid receptor ligands: consequences in receptor affinity and functionality.
    Journal of medicinal chemistry, 2007, Nov-01, Volume: 50, Issue:22

    Topics: Amides; Animals; Binding, Competitive; CHO Cells; Cricetinae; Cricetulus; Drug Inverse Agonism; Humans; Ligands; Quinolines; Radioligand Assay; Receptor, Cannabinoid, CB2; Stereoisomerism; Structure-Activity Relationship

2007
Three-dimensional quantitative structure-selectivity relationships analysis guided rational design of a highly selective ligand for the cannabinoid receptor 2.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Drug Design; Humans; Ligands; Models, Molecular; Molecular Structure; Quantitative Structure-Activity Relationship; Quinolones; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Recombinant Proteins; Stereoisomerism

2011
Chromenopyrazole, a Versatile Cannabinoid Scaffold with in Vivo Activity in a Model of Multiple Sclerosis.
    Journal of medicinal chemistry, 2016, 07-28, Volume: 59, Issue:14

    Topics: Dose-Response Relationship, Drug; HEK293 Cells; Humans; Models, Molecular; Molecular Structure; Multiple Sclerosis; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Structure-Activity Relationship

2016