corazonin-protein--insect and proctolin

corazonin-protein--insect has been researched along with proctolin* in 4 studies

Other Studies

4 other study(ies) available for corazonin-protein--insect and proctolin

ArticleYear
Evolution of Neuropeptide Precursors in Polyneoptera (Insecta).
    Frontiers in endocrinology, 2020, Volume: 11

    Neuropeptides are among the structurally most diverse signaling molecules and participate in intercellular information transfer from neurotransmission to intrinsic or extrinsic neuromodulation. Many of the peptidergic systems have a very ancient origin that can be traced back to the early evolution of the Metazoa. In recent years, new insights into the evolution of these peptidergic systems resulted from the increasing availability of genome and transcriptome data which facilitated the investigation of the complete neuropeptide precursor sequences. Here we used a comprehensive transcriptome dataset of about 200 species from the 1KITE initiative to study the evolution of single-copy neuropeptide precursors in Polyneoptera. This group comprises well-known orders such as cockroaches, termites, locusts, and stick insects. Due to their phylogenetic position within the insects and the large number of old lineages, these insects are ideal candidates for studying the evolution of insect neuropeptides and their precursors. Our analyses include the orthologs of 21 single-copy neuropeptide precursors, namely ACP, allatotropin, AST-CC, AST-CCC, CCAP, CCHamide-1 and 2, CNMamide, corazonin, CRF-DH, CT-DH, elevenin, HanSolin, NPF-1 and 2, MS, proctolin, RFLamide, SIFamide, sNPF, and trissin. Based on the sequences obtained, the degree of sequence conservation between and within the different polyneopteran lineages is discussed. Furthermore, the data are used to postulate the individual neuropeptide sequences that were present at the time of the insect emergence more than 400 million years ago. The data confirm that the extent of sequence conservation across Polyneoptera is remarkably different between the different neuropeptides. Furthermore, the average evolutionary distance for the single-copy neuropeptides differs significantly between the polyneopteran orders. Nonetheless, the single-copy neuropeptide precursors of the Polyneoptera show a relatively high degree of sequence conservation. Basic features of these precursors in this very heterogeneous insect group are explained here in detail for the first time.

    Topics: Amino Acid Sequence; Animals; Drosophila Proteins; Evolution, Molecular; Insect Hormones; Insect Proteins; Insecta; Neoptera; Neuropeptides; Oligopeptides; Phylogeny; Protein Precursors

2020
In silico characterization of the neuropeptidome of the Western black widow spider Latrodectus hesperus.
    General and comparative endocrinology, 2015, Jan-01, Volume: 210

    Technological advancements in high-throughput sequencing have resulted in the production/public deposition of an ever-growing number of arthropod transcriptomes. While most sequencing projects have focused on hexapods, transcriptomes have also been generated for members of the Chelicerata. One chelicerate for which a large transcriptome has recently been released is the Western black widow Latrodectus hesperus, a member of the Araneae (true spiders). Here, a neuropeptidome for L. hesperus was predicted using this resource. Thirty-eight peptide-encoding transcripts were mined from the L. hesperus transcriptome, with 216 distinct peptides predicted from the deduced pre/preprohormones. The identified peptides included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, neuropeptide F (NPF), orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. Of particular note were the identifications of a carboxyl (C)-terminally extended corazonin, FLPs possessing -IMRFamide, -MMYFamide, and -MIHFamide C-termini, a NPF and a sulfakinin each ending in -RYamide rather than -RFamide, a precursor whose orcokinins include C-terminally amidated isoforms, and a collection of TRPs possessing -FXPXLamide rather than the stereotypical -FXGXLamide C-termini. The L. hesperus peptidome is by far the largest thus far published for any member of the Chelicerata. Taken collectively, these data serve as a reference for future neuropeptide discovery in the Araneae and provide a foundation for future studies of peptidergic control in L. hesperus and other spiders.

    Topics: Amino Acid Sequence; Animals; Black Widow Spider; Computer Simulation; FMRFamide; Insect Hormones; Insect Proteins; Invertebrate Hormones; Molecular Sequence Data; Neuropeptides; Oligopeptides; Proteome; Transcriptome

2015
Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags.
    General and comparative endocrinology, 2008, Volume: 157, Issue:2

    The Ixodoidea (ticks) are important vectors in the transmission of many human diseases; for example, the blacklegged tick Ixodes scapularis is the major vector in the transmission of Lyme disease, the most frequently reported vector-borne illness in the United States. The development of expressed sequence tags (ESTs) for ixodoidean cDNA libraries, and their public deposition, has generated a rich resource for protein discovery in members of this taxon, thereby providing an opportunity for better understanding the physiology and behavior of these disease vectors. Here, in silico searches of publicly accessible ESTs were conducted to identify transcripts encoding putative ixodoidean neuropeptide precursors, with the mature peptides contained within them predicted using online peptide processing programs and homology to known arthropod sequences. In total, 37 putative neuropeptide-encoding ESTs were identified from three ixodoidean species: I. scapularis (29 ESTs), Rhipicephalus microplus (seven ESTs) and Amblyomma americanum (one EST). Among those identified from I. scapularis were ones predicted to encode isoforms of corazonin, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone (both calcitonin- and corticotropin-releasing factor-like), FMRFamide-related peptide (both short neuropeptide F and sulfakinin subfamilies) orcokinin, proctolin, pyrokinin/periviscerokinin/pheromone biosynthesis activating neuropeptide, SIFamide, and tachykinin-related peptide. Collectively, 80 distinct ixodoidean neuropeptides were characterized from the identified precursors. These results not only expand greatly the number of known/predicted ixodoidean neuropeptides, but also provide a strong foundation for future molecular and physiological investigations of peptidergic control in this important group of disease-transmitting arthropods.

    Topics: Amino Acid Sequence; Animals; Base Sequence; Databases, Genetic; Databases, Nucleic Acid; Expressed Sequence Tags; Gene Library; Insect Proteins; Molecular Sequence Data; Neuropeptides; Oligopeptides; Sequence Alignment; Ticks

2008
Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions.
    The Journal of biological chemistry, 2003, Dec-26, Volume: 278, Issue:52

    Activation of G protein-coupled receptors (GPCR) leads to the recruitment of beta-arrestins. By tagging the beta-arrestin molecule with a green fluorescent protein, we can visualize the activation of GPCRs in living cells. We have used this approach to de-orphan and study 11 GPCRs for neuropeptide receptors in Drosophila melanogaster. Here we verify the identities of ligands for several recently de-orphaned receptors, including the receptors for the Drosophila neuropeptides proctolin (CG6986), neuropeptide F (CG1147), corazonin (CG10698), dFMRF-amide (CG2114), and allatostatin C (CG7285 and CG13702). We also de-orphan CG6515 and CG7887 by showing these two suspected tachykinin receptor family members respond specifically to a Drosophila tachykinin neuropeptide. Additionally, the translocation assay was used to de-orphan three Drosophila receptors. We show that CG14484, encoding a receptor related to vertebrate bombesin receptors, responds specifically to allatostatin B. Furthermore, the pair of paralogous receptors CG8985 and CG13803 responds specifically to the FMRF-amide-related peptide dromyosuppressin. To corroborate the findings on orphan receptors obtained by the translocation assay, we show that dromyosuppressin also stimulated GTPgammaS binding and inhibited cAMP by CG8985 and CG13803. Together these observations demonstrate the beta-arrestin-green fluorescent protein translocation assay is an important tool in the repertoire of strategies for ligand identification of novel G protein-coupled receptors.

    Topics: Animals; Arrestins; beta-Arrestins; Cell Line; Cloning, Molecular; Cyclic AMP; Dose-Response Relationship, Drug; Drosophila; Drosophila Proteins; FMRFamide; Green Fluorescent Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Insect Hormones; Insect Proteins; Ligands; Luminescent Proteins; Microscopy, Confocal; Neuropeptides; Oligopeptides; Peptides; Protein Transport; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Receptors, Peptide; Receptors, Tachykinin; Transfection

2003