coniferyl-alcohol has been researched along with pinoresinol* in 6 studies
6 other study(ies) available for coniferyl-alcohol and pinoresinol
Article | Year |
---|---|
Identification and functional characterization of the dirigent gene family in Phryma leptostachya and the contribution of PlDIR1 in lignan biosynthesis.
Furofuran lignans, the main insecticidal ingredient in Phryma leptostachya, exhibit excellent controlling efficacy against a variety of pests. During the biosynthesis of furofuran lignans, Dirigent proteins (DIRs) are thought to be dominant in the stereoselective coupling of coniferyl alcohol to form ( ±)-pinoresinol. There are DIR family members in almost every vascular plant, but members of DIRs in P. leptostachya are unknown. To identify the PlDIR genes and elucidate their functions in lignan biosynthesis, this study performed transcriptome-wide analysis and characterized the catalytic activity of the PlDIR1 protein.. Fifteen full-length unique PlDIR genes were identified in P. leptostachya. A phylogenetic analysis of the PlDIRs classified them into four subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-g), and 12 conserved motifs were found among them. In tissue-specific expression analysis, except for PlDIR7, which displayed the highest transcript abundance in seeds, the other PlDIRs showed preferential expression in roots, leaves, and stems. Furthermore, the treatments with signaling molecules demonstrated that PlDIRs could be significantly induced by methyl jasmonate (MeJA), salicylic acid (SA), and ethylene (ETH), both in the roots and leaves of P. leptostachya. In examining the tertiary structure of the protein and the critical amino acids, it was found that PlDIR1, one of the DIR-a subfamily members, might be involved in the region- and stereo-selectivity of the phenoxy radical. Accordingly, LC-MS/MS analysis demonstrated the catalytic activity of recombinant PlDIR1 protein from Escherichia coli to direct coniferyl alcohol coupling into ( +)-pinoresinol. The active sites and hydrogen bonds of the interaction between PlDIR1 and bis-quinone methide (bisQM), the intermediate in ( +)-pinoresinol formation, were analyzed by molecular docking. As a result, 18 active sites and 4 hydrogen bonds (Asp-42, Ala-113, Leu-138, Arg-143) were discovered in the PlDIR1-bisQM complex. Moreover, correlation analysis indicated that the expression profile of PlDIR1 was closely connected with lignan accumulations after SA treatment.. The results of this study will provide useful clues for uncovering P. leptostachya's lignan biosynthesis pathway as well as facilitate further studies on the DIR family. Topics: Chromatography, Liquid; Lignans; Molecular Docking Simulation; Phylogeny; Plant Proteins; Tandem Mass Spectrometry | 2023 |
Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function.
Phenoxy radical coupling reactions are involved in the biosynthesis of lignans in planta. Interestingly, the reaction can be guided by dirigent proteins, which mediate the stereoselective formation of either (+) or (-)-pinoresinol from coniferyl alcohol. So far, the mechanism is poorly understood, and for detailed mechanistic studies, a heterologous expression platform which allows the cost-effective, fast, and robust expression in high yields is needed. We established a reliable, high-yield fed-batch fermentation process with Pichia pastoris resulting in 47 mg L⁻¹ of the dirigent protein AtDIR6, which represents a more than 250-fold increase compared to previous studies. Biochemical characterization of AtDIR6 produced with P. pastoris showed an overall agreement in protein structure, N-glycosylation sites, and dirigent activity compared to AtDIR6 produced by plant cell cultures of Solanum peruvianum. CD spectroscopy verified the β-barrel structure proposed by earlier studies and bioconversion experiments revealed similar activities to plant-derived protein, validating P. pastoris as a suitable expression system for dirigent proteins. Compared to the complex glycan structures of most plant cells, proteins produced with P. pastoris have the advantage that they can be enzymatically deglycosylated under non-denaturating conditions. With this study, we demonstrate that the glycan structures of AtDIR6 are essential for structure, solubility, and function of the protein as deglycosylation induced conformational changes leading to the complete loss in dirigent activity and subsequent protein aggregation. Topics: Arabidopsis; Arabidopsis Proteins; Circular Dichroism; Furans; Gene Expression; Glycosylation; Lignans; Phenols; Pichia; Protein Conformation; Recombinant Proteins | 2013 |
A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins.
Dirigent proteins impart stereoselectivity on the phenoxy radical-coupling reaction, yielding optically active lignans from two molecules of coniferyl alcohol. By an unknown mechanism, they direct the coupling of two phenoxy radicals toward the formation of optically active (+)- or (-)-pinoresinol. We show here that the dirigent protein AtDIR6 from Arabidopsis thaliana is a homodimeric all-beta protein in the superfamily of calycins. Based on its homology with calycins, the structure of AtDIR6 was modeled using allene oxide cyclase as template. The structural model of AtDIR6 was supported experimentally by confirmation of a predicted disulfide bridge and by the characterization of two N-linked glycans at the solvent-exposed protein surface. The model shows AtDIR6 as an eight-stranded antiparallel β-barrel with a central hydrophobic cavity for substrate binding, suggesting that dirigent proteins evolved from hydrophobic ligand-binding proteins. The data are fully consistent with the current view of the dirigent protein mode of action, according to which each subunit of the homodimer captures one of the substrate radicals and orients them in a way that precludes undesired reaction channels, thus favoring the formation of the optically pure coupling product. Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Binding Sites; Furans; Hydrophobic and Hydrophilic Interactions; Intramolecular Oxidoreductases; Lignans; Lipocalins; Models, Molecular; Molecular Sequence Data; Phenols; Protein Binding; Protein Multimerization; Protein Structure, Secondary; Sequence Homology, Amino Acid; Stereoisomerism; Structural Homology, Protein | 2012 |
Synthesis and characterization of new 5-linked pinoresinol lignin models.
Pinoresinol structures, featuring a β-β'-linkage between lignin monomer units, are important in softwood lignins and in dicots and monocots, particularly those that are downregulated in syringyl-specific genes. Although readily detected by NMR spectroscopy, pinoresinol structures largely escaped detection by β-ether-cleaving degradation analyses presumably due to the presence of the linkages at the 5 positions, in 5-5'- or 5-O-4'-structures. In this study, which is aimed at helping better understand 5-linked pinoresinol structures by providing the required data for NMR characterization, new lignin model compounds were synthesized through biomimetic peroxidase-mediated oxidative coupling reactions between pre-formed (free-phenolic) coniferyl alcohol 5-5'- or 5-O-4'-linked dimers and a coniferyl alcohol monomer. It was found that such dimers containing free-phenolic coniferyl alcohol moieties can cross-couple with the coniferyl alcohol producing pinoresinol-containing trimers (and higher oligomers) in addition to other homo- and cross-coupled products. Eight new lignin model compounds were obtained and characterized by NMR spectroscopy, and one tentatively identified cross-coupled β-O-4'-product was formed from a coniferyl alcohol 5-O-4'-linked dimer. It was demonstrated that the 5-5'- and 5-O-4'-linked pinoresinol structures could be readily differentiated by using heteronuclear multiple-bond correlation (HMBC) NMR spectroscopy. With appropriate modification (etherification or acetylation) to the newly obtained model compounds, it would be possible to identify the 5-5'- or 5-O-4'-linked pinoresinol structures in softwood lignins by 2D HMBC NMR spectroscopic methods. Identification of the cross-coupled dibenzodioxocin from a coniferyl alcohol 5-5'-linked moiety suggested that thioacidolysis or derivatization followed by reductive cleavage (DFRC) could be used to detect and identify whether the coniferyl alcohol itself undergoes 5-5'-cross-linking during lignification. Topics: Cross-Linking Reagents; Furans; Lignans; Lignin; Magnetic Resonance Spectroscopy; Phenols | 2012 |
Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein.
An essential step in lignan and lignin formation in planta is one electron oxidation of (E)-coniferyl alcohol (CA) to generate the radical intermediate (CA(*)), which can then undergo directed radical-radical couplings in vivo. For lignan formation in vitro and in vivo, stereoselective coupling of CA(*) only occurs to afford (+)-pinoresinol in the additional presence of (+)-pinoresinol forming dirigent protein (DP). Presented herein is a kinetic and thermodynamic study which reveals the central mechanistic details of the coupling process involved in DP-mediated coupling. DP activity was maximal between pH 4.25 and pH 6.0, with activity being maintained at temperatures below 33 degrees C. Equilibrium binding assays revealed that coniferyl alcohol was only weakly bound to the DP, with a K(D) of 370 +/- 65 microM. On the other hand, the enantiomeric excess of (+)-pinoresinol formed was dependent on both DP concentration and rate of CA oxidation and, thus, on apparent steady-state [CA(*)]. The data obtained could best be explained using a kinetic model where radical-radical coupling via DP competes with that occurring in open solution. Using this model, an apparent K(M) of about 10 nM was estimated from the saturation behavior of (+)-pinoresinol formation with respect to apparent steady-state [CA(*)]. These data strongly suggest that CA(*), rather than CA, is the substrate for DP, in agreement with earlier predictions. A mechanism of directed radical-radical coupling, where two coniferyl alcohol radical substrates are bound per protein dimer, is proposed. Topics: Binding, Competitive; Dimerization; Free Radicals; Furans; Hydrogen-Ion Concentration; Kinetics; Lignans; Models, Chemical; Phenols; Plant Proteins; Protein Binding; Stereoisomerism; Temperature | 2004 |
Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center.
The regio- and stereospecificity of bimolecular phenoxy radical coupling reactions, of especial importance in lignin and lignan biosynthesis, are clearly controlled in some manner in vivo; yet in vitro coupling by oxidases, such as laccases, only produce racemic products. In other words, laccases, peroxidases, and comparable oxidases are unable to control regio- or stereospecificity by themselves and thus some other agent must exist. A 78-kilodalton protein has been isolated that, in the presence of an oxidase or one electron oxidant, effects stereoselective bimolecular phenoxy radical coupling in vitro. Itself lacking a catalytically active (oxidative) center, its mechanism of action is presumed to involve capture of E-coniferyl alcohol-derived free-radical intermediates, with consequent stereoselective coupling to give (+)-pinoresinol. Topics: Dimerization; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Free Radicals; Furans; Kinetics; Laccase; Lignans; Molecular Conformation; Oxidation-Reduction; Oxidoreductases; Phenols; Plant Proteins; Stereoisomerism | 1997 |