coniferyl-alcohol and estragole

coniferyl-alcohol has been researched along with estragole* in 2 studies

Other Studies

2 other study(ies) available for coniferyl-alcohol and estragole

ArticleYear
Alcohol acyl transferase 1 links two distinct volatile pathways that produce esters and phenylpropenes in apple fruit.
    The Plant journal : for cell and molecular biology, 2017, Volume: 91, Issue:2

    Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2-methylbutyl acetate and hexyl acetate) both co-located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518), and here we show it is also required to produce p-hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic 'Royal Gala' MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over-expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O-methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p-coumaryl and coniferyl alcohols, indicating that ripening-related AATs are likely to link volatile ester and phenylpropene production in many different fruit.

    Topics: Acyltransferases; Allylbenzene Derivatives; Anisoles; Esters; Fragaria; Fruit; Gene Expression Regulation, Plant; Gene Knockout Techniques; Malus; Metabolic Networks and Pathways; Nicotiana; Phenols; Plant Proteins; Plants, Genetically Modified; Proteins; Quantitative Trait Loci; Solanum lycopersicum; Volatile Organic Compounds

2017
A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeug
    Archives of biochemistry and biophysics, 2007, Sep-01, Volume: 465, Issue:1

    The creosote bush (Larrea tridentata) accumulates a complex mixture of 8-8' regiospecifically linked lignans, of which the potent antioxidant nordihydroguaiaretic acid (NDGA) is the most abundant. Its tetra-O-methyl derivative (M4N) is showing considerable promise in the treatment of refractory (hard-to-treat) brain and central nervous system tumors. NDGA and related 9,9'-deoxygenated lignans are thought to be formed by dimerization of allyl/propenyl phenols, phenylpropanoid compounds that lack C-9 oxygenation, thus differentiating them from the more common monolignol-derived lignans. In our ongoing studies dedicated towards elucidating the biochemical pathway to NDGA and its congeners, a pinoresinol-lariciresinol reductase homologue was isolated from L. tridentata, with the protein obtained in functional recombinant form. This protein efficiently catalyzes the conversion of p-coumaryl and coniferyl alcohol esters into the corresponding allylphenols, chavicol and eugenol; neither of their propenylphenol regioisomers, p-anol and isoeugenol, are formed during this enzyme reaction.

    Topics: Allylbenzene Derivatives; Amino Acid Sequence; Anisoles; Catalysis; Coumaric Acids; Enzyme Activation; Esters; Eugenol; Isoenzymes; Larrea; Molecular Sequence Data; Oxidoreductases; Phenols; Propionates

2007