coniferyl-alcohol has been researched along with 4-hydroxybenzoic-acid* in 1 studies
1 other study(ies) available for coniferyl-alcohol and 4-hydroxybenzoic-acid
Article | Year |
---|---|
4-Hydroxycinnamoyl-CoA hydratase/lyase, an enzyme of phenylpropanoid cleavage from Pseudomonas, causes formation of C(6)-C(1) acid and alcohol glucose conjugates when expressed in hairy roots of Datura stramonium L.
4-Hydroxycinnamoyl-CoA hydratase/lyase (HCHL), a crotonase homologue of phenylpropanoid catabolism from Pseudomonas fluorescens strain AN103, led to the formation of 4-hydroxybenzaldehyde metabolites when expressed in hairy root cultures of Datura stramonium L. established by transformation with Agrobacterium rhizogenes. The principal new compounds observed were the glucoside and glucose ester of 4-hydroxybenzoic acid, together with 4-hydroxybenzyl alcohol- O-beta- D-glucoside. In lines actively expressing HCHL, these together amounted to around 0.5% of tissue fresh mass. No protocatechuic derivatives were found, although a trace of vanillic acid-beta- D-glucoside was detected. There was no accumulation of 4-hydroxybenzaldehydes, whether free or in the form of their glucose conjugates. There was some evidence suggesting a diminished availability of feruloyl-CoA for the production of feruloyl putrescine and coniferyl alcohol. The findings are discussed in the context of a diversion of phenylpropanoid metabolism, and the ability of plants and plant cultures to conjugate phenolic compounds. Topics: Benzaldehydes; Datura stramonium; Enoyl-CoA Hydratase; Gene Expression Regulation, Enzymologic; Glucose; Hydro-Lyases; Lignin; Parabens; Phenols; Plant Roots; Plants, Genetically Modified; Propanols; Pseudomonas fluorescens; Vanillic Acid | 2002 |