concanavalin-a has been researched along with thionine* in 3 studies
3 other study(ies) available for concanavalin-a and thionine
Article | Year |
---|---|
Enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with horseradish peroxidase-thionine conjugate for ultrasensitive electrochemical immunoassay.
A novel (invertase) enzymatic hydrolysate-triggered displacement reaction strategy with multifunctional silica beads, doped with horseradish peroxidase-thionine (HRP-Thi) conjugate, was developed for competitive-type electrochemical immunoassay of small molecular aflatoxin B1 (AFB1). The competitive-type displacement reaction was carried out on the basis of the affinity difference between enzymatic hydrolysate (glucose) and its analogue (dextran) for concanavalin A (Con A) binding sites. Initially, thionine-HRP conjugates were doped into nanometer-sized silica beads using the reverse micelle method. Then monoclonal anti-AFB1 antibody and Con A were covalently conjugated to the silica beads. The immunosensor was prepared by means of immobilizing the multifunctional silica beads on a dextran-modified sensing interface via the dextran-Con A binding reaction. Gold nanoparticles functionalized with AFB1-bovine serum albumin conjugate (AFB1-BSA) and invertase were utilized as the trace tag. Upon target AFB1 introduction, a competitive-type immunoreaction was implemented between the analyte and the labeled AFB1-BSA on the nanogold particles for the immobilized anti-AFB1 antibody on the electrode. The invertase followed by gold nanoparticles hydrolyzed sucrose into glucose and fructose. The produced glucose displaced the multifunctional silica beads from the electrode based on the classical dextran-Con A-glucose system, thus decreasing the catalytic efficiency of the immobilized HRP on the electrode relative to that of the H2O2-thionine system. Under optimal conditions, the detectable electrochemical signal increased with the increasing target AFB1 in a dynamic working range from 3.0 pg mL(-1) to 20 ng mL(-1) with a detection limit of 2.7 pg mL(-1). The strong bioconjugation with two nanostructures also resulted in a good repeatability and interassay precision down to 9.3%. Finally, the methodology was further validated for analysis of naturally contaminated or spiked AFB1 peanut samples, giving results matched well with those from a commercialized AFB1 enzyme-linked immunosorbent assay kit. Importantly, the system provides a signal-on competitive-type immunosensing platform for ultrasensitive detection of small molecules. Topics: Aflatoxin B1; Animals; Antibodies, Immobilized; Antibodies, Monoclonal; Arachis; beta-Fructofuranosidase; Cattle; Concanavalin A; Electrochemical Techniques; Electrodes; Enzyme-Linked Immunosorbent Assay; Enzymes, Immobilized; Gold; Horseradish Peroxidase; Metal Nanoparticles; Phenothiazines; Serum Albumin; Silicon Dioxide; Sucrose | 2015 |
A selective novel non-enzyme glucose amperometric biosensor based on lectin-sugar binding on thionine modified electrode.
A novel non-enzyme glucose amperometric biosensor was fabricated based on biospecific binding affinity of concanavalin A (Con A) for D-glucose on thionine (TH) modified electrode. TH can be covalently immobilized on potentiostatically activated glassy carbon electrode through Schiff-base reaction. Subsequently, the surface-adherent polydopamine film formed by self-polymerization of dopamine attached to TH and afforded binding sites for the subsequent immobilization of Con A molecules via Michael addition and/or Schiff-base reaction with high stability. Thus, a sensing platform for specific detection towards D-glucose was established. The binding of Con A towards D-glucose can be monitored through the decrease of the electrode response of the TH moiety. Due to the high affinity of Con A for D-glucose and high stability of the resulting sensing platform, the fabricated biosensor exhibited high selectivity, good sensitivity, and wide linear range from 1.0×10(-6) to 1.0×10(-4) M with a low detection limit of 7.5×10(-7) M towards D-glucose. Topics: Biosensing Techniques; Coated Materials, Biocompatible; Concanavalin A; Conductometry; Equipment Design; Equipment Failure Analysis; Glucose; Phenothiazines; Protein Binding | 2011 |
Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells.
In this article, we report a novel lectin-based biosensor for electrochemical assay of cancer-associated glycosylation by comparative study of mannose and sialic acid expression on normal and cancer cells derived from human lung, liver, and prostate. Using a sandwich format, high sensitivity and selectivity were achieved by combining the lectin-based biosensor with the {lectin-Au-Th} bioconjugates featuring lectin and thionine (Th) labels linked to gold nanoparticles (AuNPs) for signal amplification. The proposed strategy demonstrated that mannose exhibited high expression levels in both normal and cancer cells, while sialic acid was more abundant in cancer cells as compared to normal ones. The results were in good agreement with those from fluorescent microscopy studies. The differences in the two glycan expression indicated that sialic acid could serve as a potential biomarker for early cancer detection. The lectin-based biosensor was also successfully used to quantify cancer cells and evaluate the average amount of sialic acid on single cell surface, which could supply significant information on glycan functions in cancer progression. Overall, the lectin-based electrochemical biosensor provides an effective pathway to analyze glycan expression on living cells and may greatly facilitate the medical diagnosis and treatment in early process of cancer. Topics: Biosensing Techniques; Cell Line, Tumor; Cell Survival; Concanavalin A; Electrochemistry; Electrodes; Glass; Glycosylation; Gold; Humans; Immobilized Proteins; Mannose; Metal Nanoparticles; Microscopy, Fluorescence; N-Acetylneuraminic Acid; Nanotubes, Carbon; Neoplasms; Phenothiazines; Plant Lectins; Protein Stability; Ribosome Inactivating Proteins | 2010 |