concanavalin-a has been researched along with lauric-acid* in 2 studies
2 other study(ies) available for concanavalin-a and lauric-acid
Article | Year |
---|---|
Bioadhesion of supramolecular structures at supported planar bilayers as studied by the quartz crystal microbalance.
A quartz crystal microbalance (QCM) was used to study the adhesion behavior of supramolecular aggregates at supported planar bilayers (SPBs). The QCM technique is a suitable method to detect the adsorption of biomolecules at the quartz surface owing to its sensitivity for changes in mass and viscoelastic properties. To simulate biomembranes, the quartz plates were coated with highly ordered lipid films. Therefore, a combination of self-assembled monolayers and Langmuir-Blodgett films was used. Firstly, the adsorption of liposomes coupled with the lectin concanavalin A was investigated at glycolipid-containing model membranes. Using different carbohydrates, it was possible to determine specific and nonspecific parts of the interactions. The adhesion occurred owing to specific lectin-carbohydrate interactions (about 20%) and to nonspecific interactions (about 80%). The composition of the liposomes was changed to simulate the structure of a native biomembrane consisting of the glycocalix, the lipid-protein bilayer, and the cytoskeleton. An artificial glycocalix was created by incorporating poly(ethylene glycol) into the liposomes. Liposomes which were intravesicular polymerized with polyacrylamide or polyacrylcholate simulated the cytoskeleton. It was determined that the modified liposomes had significant lower interactions with SPBs. The adsorption was reduced by approximately 80% compared to unmodified liposomes. Secondly, a model was developed for the detection of interactions between simple or mixed bile salt micelles and model membranes. It was found that simple bile salts did not adsorb at model membranes. Binary systems consisting of bile salt and phospholipid induced only small interactions. On the other hand, ternary systems consisting of bile salt, phospholipid, and fatty acid showed strong interactions. A dependence on the chain length of the fatty acid was observed. Thirdly, the interaction between ganglioside-containing model membranes and cholera toxin (beta-subunit) was investigated. Different ganglioside fractions showed varying adsorption in the following sequence: GM1 > GD1a > GD1b > GT1b. Topics: 1,2-Dipalmitoylphosphatidylcholine; Biophysics; Carbohydrate Conformation; Carbohydrate Sequence; Cholera Toxin; Concanavalin A; G(M1) Ganglioside; Gangliosides; Indicators and Reagents; Lauric Acids; Lipid Bilayers; Models, Biological; Models, Molecular; Molecular Conformation; Molecular Sequence Data; Phosphatidylcholines; Stearic Acids; Weights and Measures | 2001 |
A glycoprotein binding retinoids and fatty acids is present in Drosophila.
In the search for a possible Drosophila melanogaster homolog of interphotoreceptor retinoid-binding protein (IRBP), a approximately 140-kDa retinoid- and fatty acid-binding glycoprotein found in vertebrates, the 110,000 g supernatant fraction prepared from homogenates of fly heads was analyzed for the presence of proteins capable of binding radiolabeled retinol and palmitic acid. A soluble protein, which binds concanavalin A and has a retention time on size-exclusion high-performance liquid chromatography identical to that of purified bovine IRBP, was identified as binding both ligands. As assessed by fluorescence titration, the protein fraction obtained by concanavalin A-Sepharose affinity chromatography and size-exclusion chromatography of fly head supernatant had apparent dissociation constants of 2.9 x 10(-7) +/- 0.6 M for all-trans retinol, with the number (n) of independent ligand binding sites per protein molecule = 2, and 3.5 x 10(-7) +/- 0.1 M for 16-[9-anthroyloxy] palmitic acid with n = 7. High-performance liquid chromatography of hexane extracts of this protein fraction resolved several peaks with polarity and relative retention times similar, but not identical to all-trans retinol and retinal and their 9-, 11-, and 13-cis isomers. Gas chromatography/mass spectrometry analysis of fatty acid methyl esters prepared following lipid extraction of the protein identified lauric, myristic, palmitic, palmitoleic, and oleic acids as being covalently bound. Laurate, myristate, palmitate, and stearate were noncovalently bound. The apparent molecular mass of the Drosophila protein as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the retinoid- and fatty acid-binding peak obtained by hydrophobic interaction chromatography of the size-exclusion fraction was approximately 70 kDa. Topics: Animals; Binding Sites; Chromatography, High Pressure Liquid; Concanavalin A; Drosophila melanogaster; Eye Proteins; Fatty Acids, Monounsaturated; Glycoproteins; Head; Lauric Acids; Ligands; Myristic Acid; Myristic Acids; Palmitic Acid; Palmitic Acids; Retinol-Binding Proteins; Vitamin A | 1994 |