concanavalin-a has been researched along with actinonin* in 2 studies
2 other study(ies) available for concanavalin-a and actinonin
Article | Year |
---|---|
Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells.
Pre-clinical trials for cancer therapeutics support the anti-neoplastic properties of the lectin from Canavalia ensiformis (Concanavalin-A, ConA) in targeting apoptosis and autophagy in a variety of cancer cells. Given that membrane type-1 matrix metalloproteinase (MT1-MMP), a plasma membrane-anchored matrix metalloproteinase, is a glycoprotein strongly expressed in radioresistant and chemoresistant glioblastoma that mediates pro-apoptotic signalling in brain cancer cells, we investigated whether MT1-MMP could also signal autophagy. Among the four lectins tested, we found that the mannopyranoside/glucopyranoside-binding ConA, which is also well documented to trigger MT1-MMP expression, increases autophagic acidic vacuoles formation as demonstrated by Acridine Orange cell staining. Although siRNA-mediated MT1-MMP gene silencing effectively reversed ConA-induced autophagy, inhibition of the MT1-MMP extracellular catalytic function with Actinonin or Ilomastat did not. Conversely, direct overexpression of the recombinant Wt-MT1-MMP protein triggered proMMP-2 activation and green fluorescent protein-microtubule-associated protein light chain 3 puncta indicative of autophagosomes formation, while deletion of MT1-MMP's cytoplasmic domain disabled such autophagy induction. ConA-treated U87 cells also showed an upregulation of BNIP3 and of autophagy-related gene members autophagy-related protein 3, autophagy-related protein 12 and autophagy-related protein 16-like 1, where respective inductions were reversed when MT1-MMP gene expression was silenced. Altogether, we provide molecular evidence supporting the pro-autophagic mechanism of action of ConA in glioblastoma cells. We also highlight new signal transduction functions of MT1-MMP within apoptotic and autophagic pathways that often characterize cancer cell responses to chemotherapeutic drugs. Topics: Acridine Orange; Autophagy; Brain Neoplasms; Cell Line, Tumor; Concanavalin A; Fluorescent Dyes; Gene Expression Regulation, Neoplastic; Gene Silencing; Glioblastoma; Humans; Hydroxamic Acids; Indoles; Mannose; Matrix Metalloproteinase 14; Neoplasm Proteins; Protein Structure, Tertiary; RNA, Small Interfering; Signal Transduction; Vacuoles | 2012 |
Cell-based evidence for aminopeptidase N/CD13 inhibitor actinonin targeting of MT1-MMP-mediated proMMP-2 activation.
Recent profiling has identified the aminopeptidase N/CD13 inhibitor actinonin as a selective soluble secreted matrix metalloproteinase (MMP) inhibitor. Given that actinonin's effects against membrane-bound MMPs remain unknown and that MT1-MMP has been linked to chemo- and radio-therapy resistance in brain tumor development, we therefore assessed MT1-MMP functional inhibition by actinonin in U87 glioblastoma cells. We show that actinonin inhibits concanavalin-A (ConA)-induced proMMP-2 activation, while it does not inhibit ConA-induced MT1-MMP gene expression suggesting post-transcriptional effects of the drug possibly mediated through the membrane-anchored protease regulator RECK. Specific gene silencing of MT1-MMP with siRNA abrogated the ability of ConA to activate proMMP-2. Functional recombinant MT1-MMP whose constitutive expression led to proMMP-2 activation was also efficiently antagonized by actinonin. We provide evidence for actinonin's new therapeutic application in the direct targeting of MT1-MMP-mediated proMMP-2 activation, an essential step in both brain tumor infiltration and in brain tumor-associated angiogenesis. Topics: Antineoplastic Agents; CD13 Antigens; Cell Line, Tumor; Concanavalin A; Enzyme Activation; Enzyme Precursors; Glioblastoma; Humans; Hydroxamic Acids; Matrix Metalloproteinase 14; Matrix Metalloproteinase 2; Matrix Metalloproteinase Inhibitors; PHEX Phosphate Regulating Neutral Endopeptidase; Protein Binding | 2009 |