colistin and epigallocatechin-gallate

colistin has been researched along with epigallocatechin-gallate* in 2 studies

Other Studies

2 other study(ies) available for colistin and epigallocatechin-gallate

ArticleYear
Biofilm formation of the black yeast-like fungus Exophiala dermatitidis and its susceptibility to antiinfective agents.
    Scientific reports, 2017, 02-17, Volume: 7

    Various fungi have the ability to colonize surfaces and to form biofilms. Fungal biofilm-associated infections are frequently refractory to targeted treatment because of resistance to antifungal drugs. One fungus that frequently colonises the respiratory tract of cystic fibrosis (CF) patients is the opportunistic black yeast-like fungus Exophiala dermatitidis. We investigated the biofilm-forming ability of E. dermatitidis and its susceptibility to various antiinfective agents and natural compounds. We tested 58 E. dermatitidis isolates with a biofilm assay based on crystal violet staining. In addition, we used three isolates to examine the antibiofilm activity of voriconazole, micafungin, colistin, farnesol, and the plant derivatives 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranose (PGG) and epigallocatechin-3-gallate (EGCG) with an XTT reduction assay. We analysed the effect of the agents on cell to surface adhesion, biofilm formation, and the mature biofilm. The biofilms were also investigated by confocal laser scan microscopy. We found that E. dermatitidis builds biofilm in a strain-specific manner. Invasive E. dermatitidis isolates form most biomass in biofilm. The antiinfective agents and the natural compounds exhibited poor antibiofilm activity. The greatest impact of the compounds was detected when they were added prior cell adhesion. These findings suggest that prevention may be more effective than treatment of biofilm-associated E. dermatitidis infections.

    Topics: Antifungal Agents; Bacterial Adhesion; beta-Glucans; Biofilms; Catechin; Colistin; Cystic Fibrosis; Echinocandins; Exophiala; Farnesol; Humans; Lipopeptides; Micafungin; Microbial Sensitivity Tests; Mycoses; Voriconazole

2017
Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.
    PloS one, 2014, Volume: 9, Issue:4

    We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF.

    Topics: Animals; Bacterial Load; Biofilms; Catechin; Colistin; Female; Instillation, Drug; Kinetics; Mice, Inbred C57BL; Mice, Mutant Strains; Microbial Sensitivity Tests; Stenotrophomonas maltophilia; Tea

2014