colistin has been researched along with apramycin* in 3 studies
3 other study(ies) available for colistin and apramycin
Article | Year |
---|---|
Apramycin susceptibility of multidrug-resistant Gram-negative blood culture isolates in five countries in Southeast Asia.
Bloodstream infections (BSIs) are a leading cause of sepsis, which is a life-threatening condition that significantly contributes to the mortality of bacterial infections. Aminoglycoside antibiotics such as gentamicin or amikacin are essential medicines in the treatment of BSIs, but their clinical efficacy is increasingly being compromised by antimicrobial resistance. The aminoglycoside apramycin has demonstrated preclinical efficacy against aminoglycoside-resistant and multidrug-resistant (MDR) Gram-negative bacilli (GNB) and is currently in clinical development for the treatment of critical systemic infections.. This study collected a panel of 470 MDR GNB isolates from healthcare facilities in Cambodia, Laos, Singapore, Thailand and Vietnam for a multicentre assessment of their antimicrobial susceptibility to apramycin in comparison with other aminoglycosides and colistin by broth microdilution assays.. Apramycin and amikacin MICs ≤ 16 µg/mL were found for 462 (98.3%) and 408 (86.8%) GNB isolates, respectively. Susceptibility to gentamicin and tobramycin (MIC ≤ 4 µg/mL) was significantly lower at 122 (26.0%) and 101 (21.5%) susceptible isolates, respectively. Of note, all carbapenem and third-generation cephalosporin-resistant Enterobacterales, all Acinetobacter baumannii and all Pseudomonas aeruginosa isolates tested in this study appeared to be susceptible to apramycin. Of the 65 colistin-resistant isolates tested, four (6.2%) had an apramycin MIC > 16 µg/mL.. Apramycin demonstrated best-in-class activity against a panel of GNB isolates with resistances to other aminoglycosides, carbapenems, third-generation cephalosporins and colistin, warranting continued consideration of apramycin as a drug candidate for the treatment of MDR BSIs. Topics: Amikacin; Aminoglycosides; Anti-Bacterial Agents; Asia, Southeastern; Blood Culture; Carbapenems; Cephalosporins; Colistin; Drug Resistance, Multiple, Bacterial; Gentamicins; Gram-Negative Bacteria; Microbial Sensitivity Tests; Nebramycin; Pseudomonas aeruginosa; Tobramycin | 2022 |
Efficacy of EBL-1003 (apramycin) against Acinetobacter baumannii lung infections in mice.
Novel therapeutics are urgently required for the treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) causing critical infections with high mortality. Here we assessed the therapeutic potential of the clinical-stage drug candidate EBL-1003 (crystalline free base of apramycin) in the treatment of CRAB lung infections.. The genotypic and phenotypic susceptibility of CRAB clinical isolates to aminoglycosides and colistin was assessed by database mining and broth microdilution. The therapeutic potential was assessed by target attainment simulations on the basis of time-kill kinetics, a murine lung infection model, comparative pharmacokinetic analysis in plasma, epithelial lining fluid (ELF) and lung tissue, and pharmacokinetic/pharmacodynamic (PKPD) modelling.. Resistance gene annotations of 5451 CRAB genomes deposited in the National Database of Antibiotic Resistant Organisms (NDARO) suggested >99.9% of genotypic susceptibility to apramycin. Low susceptibility to standard-of-care aminoglycosides and high susceptibility to EBL-1003 were confirmed by antimicrobial susceptibility testing of 100 A. baumannii isolates. Time-kill experiments and a mouse lung infection model with the extremely drug-resistant CRAB strain AR Bank #0282 resulted in rapid 4-log CFU reduction both in vitro and in vivo. A single dose of 125 mg/kg EBL-1003 in CRAB-infected mice resulted in an AUC of 339 h × μg/mL in plasma and 299 h × μg/mL in ELF, suggesting a lung penetration of 88%. PKPD simulations suggested a previously predicted dose of 30 mg/kg in patients (creatinine clearance (CLCr) = 80 mL/min) to result in >99% probability of -2 log target attainment for MICs up to 16 μg/mL.. This study provides proof of concept for the efficacy of EBL-1003 in the treatment of CRAB lung infections. Broad in vitro coverage, rapid killing, potent in vivo efficacy, and a high probability of target attainment render EBL-1003 a strong therapeutic candidate for a priority pathogen for which treatment options are very limited. Topics: Acinetobacter baumannii; Acinetobacter Infections; Aminoglycosides; Animals; Anti-Bacterial Agents; Colistin; Lung; Mice; Microbial Sensitivity Tests; Nebramycin | 2021 |
Antimicrobial resistance in enteric porcine Escherichia coli strains in Spain.
Topics: Amoxicillin; Animals; Animals, Newborn; Anti-Bacterial Agents; Cephalosporins; Colistin; Diarrhea; Drug Resistance, Microbial; Enrofloxacin; Escherichia coli; Escherichia coli Infections; Fluoroquinolones; Microbial Sensitivity Tests; Nebramycin; Neomycin; Quinolones; Spain; Swine; Swine Diseases | 2000 |