colistin and aminoarabinose

colistin has been researched along with aminoarabinose* in 2 studies

Other Studies

2 other study(ies) available for colistin and aminoarabinose

ArticleYear
Effect of lipid A aminoarabinosylation on Pseudomonas aeruginosa colistin resistance and fitness.
    International journal of antimicrobial agents, 2020, Volume: 55, Issue:5

    Colistin represents the last-line treatment option against many multidrug-resistant Gram-negative pathogens. Several lines of evidence indicate that aminoarabinosylation of the lipid A moiety of lipopolysaccharide (LPS) is an essential step for the development of colistin resistance in Pseudomonas aeruginosa. However, whether it is sufficient to confer resistance in this bacterium remains unclear. The aim of this work was to investigate the specific contribution of lipid A aminoarabinosylation to colistin resistance in P. aeruginosa and evaluate the effect of this resistance mechanism on bacterial fitness. Recombinant strains constitutively expressing the enzymes for lipid A aminoarabinosylation were generated in a small collection of reference and clinical isolates and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR), lipid A extraction and mass spectrometry. The effect of aminoarabinosylated lipid A on colistin resistance was found to be strain- and culture condition-dependent. Higher levels of resistance were generally obtained in the presence of divalent cations, which appear to be important for aminoarabinosylation-mediated colistin resistance. High colistin resistance was also observed for most strains in human serum and in artificial sputum medium, which should partly mimic growth conditions during infection. The results of growth, biofilm, cell envelope integrity and Galleria mellonella infection assays indicate that lipid A aminoarabinosylation does not cause relevant fitness costs in P. aeruginosa.

    Topics: Animals; Anti-Bacterial Agents; Arabinose; Biofilms; Colistin; Disk Diffusion Antimicrobial Tests; Drug Resistance, Multiple, Bacterial; Humans; Lipid A; Moths; Pseudomonas aeruginosa; Pseudomonas Infections

2020
Inactivation of the arn operon and loss of aminoarabinose on lipopolysaccharide as the cause of susceptibility to colistin in an atypical clinical isolate of proteus vulgaris.
    International journal of antimicrobial agents, 2018, Volume: 51, Issue:3

    Colistin has become a last-line antibiotic for the treatment of multidrug-resistant bacterial infections; however, resistance to colistin has emerged in recent years. Some bacteria, such as Proteus and Serratia spp., are intrinsically resistant to colistin although the exact mechanism of resistance is unknown. Here we identified the molecular support for intrinsic colistin resistance in Proteus spp. by comparative genomic, transcriptomic and proteomic analyses of colistin-susceptible (CSUR P1868_S) and colistin-resistant (CSUR P1867_R) strains of an atypical Proteus vulgaris. A significant difference in outer membrane glycoside structures in both strains that was corroborated by MALDI-TOF/MS analysis was found, which showed an absence of 4-amino-4-deoxy-l-arabinose (L-Ara4N) in the outer membrane lipid A moiety of the susceptible strain. Comparative genomic analysis with other resistant strains of P. vulgaris available in a local database found a mutation in the arnBCADTEF operon of the susceptible strain. Transcriptomic analysis of genes belonging to the arnBCADTEF operon showed a significant decrease in mRNA expression level of these genes in the susceptible strain, supporting addition of L-Ara4N in the outer membrane lipid A moiety as an explanation for colistin resistance. Insertion of the arnD gene that was suggested to be altered in the susceptible strain by in silico analysis led to a 16-fold increase of colistin MIC in the susceptible strain, confirming its role in colistin resistance in this species. Here we show that constitutive activation of the arn operon and addition of L-Ara4N is the main molecular mechanism of colistin resistance in P. vulgaris.

    Topics: Anti-Bacterial Agents; Arabinose; Colistin; DNA Mutational Analysis; Gene Expression Profiling; Gene Knockout Techniques; Genomics; Humans; Lipopolysaccharides; Microbial Sensitivity Tests; Mutation; Operon; Proteomics; Proteus Infections; Proteus vulgaris; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2018