Page last updated: 2024-08-23

colforsin and 3,3',4,5'-tetrahydroxystilbene

colforsin has been researched along with 3,3',4,5'-tetrahydroxystilbene in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (75.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Barat, C; Tremblay, MJ1
Blumenstein, I; Keserü, B; Stein, J; Wolter, F1

Other Studies

4 other study(ies) available for colforsin and 3,3',4,5'-tetrahydroxystilbene

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Treatment of human T cells with bisperoxovanadium phosphotyrosyl phosphatase inhibitors leads to activation of cyclooxygenase-2 gene.
    The Journal of biological chemistry, 2003, Feb-28, Volume: 278, Issue:9

    Topics: Active Transport, Cell Nucleus; Adaptor Proteins, Signal Transducing; Binding Sites; Calcineurin; Calcium; Calcium Channel Blockers; Carrier Proteins; CCAAT-Enhancer-Binding Proteins; Cell Line; Cell Nucleus; Colforsin; Cyclooxygenase 2; Cyclosporine; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Gallic Acid; Humans; Immunosuppressive Agents; Isoenzymes; Jurkat Cells; Lymphocyte Specific Protein Tyrosine Kinase p56(lck); Membrane Proteins; Mutation; Phosphoproteins; Phosphorylation; Plasmids; Promoter Regions, Genetic; Prostaglandin-Endoperoxide Synthases; Protein Tyrosine Phosphatases; Protein-Tyrosine Kinases; Signal Transduction; Stilbenes; T-Lymphocytes; Tacrolimus; Time Factors; Transcription, Genetic; Transcriptional Activation; Transfection; Vanadates; Vanadium Compounds; ZAP-70 Protein-Tyrosine Kinase

2003
The chemopreventive agent resveratrol stimulates cyclic AMP-dependent chloride secretion in vitro.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2005, Aug-01, Volume: 11, Issue:15

    Topics: Animals; Anticarcinogenic Agents; Butyrates; Cell Differentiation; Cell Line, Tumor; Chlorides; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Electrophysiology; Humans; In Vitro Techniques; Jejunum; Male; Mice; Mice, Inbred BALB C; Resveratrol; Signal Transduction; Stilbenes; Time Factors

2005