coenzyme-q10 and retinol-palmitate

coenzyme-q10 has been researched along with retinol-palmitate* in 2 studies

Other Studies

2 other study(ies) available for coenzyme-q10 and retinol-palmitate

ArticleYear
Safety and efficacy of antioxidants-loaded nanoparticles for an anti-aging application.
    Journal of biomedical nanotechnology, 2012, Volume: 8, Issue:2

    The aim of this work was to perform a pilot study on the safety and efficacy of nanoparticle formulation for cosmetic application. The encapsulated actives in the nanoparticles were a blend of coenzyme Q10, retinyl palmitate, tocopheryl acetate, grape seed oil and linseed oil. The nanoparticle suspension was characterized in terms of pH and particle size. For the safety assessment, alternative methods as cytotoxicity and HET CAM were used. The clinical skin compatibility tests were also performed. The efficacy was evaluated in healthy volunteers presenting different degrees of periorbital wrinkles. Skin hydration was performed by corneometry. The nanoparticles presented narrow size around 140 nm and pH close to neutral and were suitable to cutaneous application. The alternative tests demonstrated that the nanoparticles did not present potential to induce skin irritant effects, cytotoxicity or generate oxidative stress. The clinical assays confirmed the in vitro results, demonstrating the safety of the nanoparticles, which were not irritant, sensitizing and comedogenic. Furthermore, the exposure to UVA light did not cause photoxicity. Regarding the efficacy, nanoparticles presented significant reduction in wrinkle degree after 21 days of application compared to the control. The volunteers could differentiate the nanoparticles and the control product by means of subjective analyses. In conclusion, the nanoparticles containing antioxidant actives were safe for topical use and presented anti-aging activity in vivo and are suitable to be used as cosmetic ingredient.

    Topics: Adult; Animals; Antioxidants; Cell Survival; Chickens; Chromans; Cosmetics; Diterpenes; Humans; Hydrogen-Ion Concentration; Linseed Oil; Mice; Mice, Inbred BALB C; Middle Aged; Nanoparticles; NIH 3T3 Cells; Particle Size; Retinyl Esters; Skin; Skin Aging; Skin Irritancy Tests; Sunscreening Agents; Tocopherols; Ubiquinone; Vitamin A

2012
Effects of ethanol, lovastatin and coenzyme Q10 treatment on antioxidants and TBA reactive material in liver of rats.
    Molecular aspects of medicine, 1994, Volume: 15 Suppl

    Alcohol metabolism may result in oxidant stress and free radical injury through a variety of mechanisms. Lovastatin may also produce oxidant stress by reducing levels of an endogenous antioxidant, coenzyme Q (CoQ). The separate and combined effects of ethanol, 20 EN% in a total liquid diet, and lovastatin, 67 mg/kg diet, on alpha-tocopherol, retinol palmitate, CoQ9 and thiobarbituric acid reactive (TBAR) material in liver from rats were determined. The effect of exogenous CoQ10 on these treatment groups was also determined. Food consumption, weight gain, liver lipid and TBAR material were similar between treatment groups. Compared to control animals, ethanol reduced retinol palmitate significantly, from 143 to 90 micrograms/g wet weight. Lovastatin had no effect on retinal palmitate nor did it act additively with ethanol. Ethanol decreased liver alpha-tocopherol from 28 to 12 micrograms/g wet weight and lovastatin diminished it to 12 micrograms; no additive effect was evident. Ethanol had no effect, but lovastatin decreased CoQ9 from 83 to 55 micrograms/g wet weight. Supplementation with CoQ10 did not modulate the effect of ethanol on retinal palmitate, but it did reverse the effect of lovastatin on CoQ9. Supplementary CoQ10 did not alter control levels of alpha-tocopherol, but it appeared to reverse most of the decrease in alpha-tocopherol attributable to ethanol or lovastatin separately. It only partially reversed the effect of ethanol and lovastatin combined on alpha-tocopherol, however. As expected, lovastatin had no effect on CoQ10 levels in supplemented animals. Ethanol, either separately or in combination with lovastatin, diminished liver stores of CoQ10 by almost 40%. We conclude that 20 EN% ethanol given in a liquid diet for 5 weeks is sufficient to lower retinol palmitate and that lovastatin reduces CoQ9. Both diminish alpha-tocopherol, an effect largely overcome by CoQ10 supplementation with either drug alone, but not with the combination. Since many individuals chronically consume the levels of ethanol represented by this experiment, and since a certain number of those also take lovastatin, further research into the possible clinical significance of these observations is warranted.

    Topics: Animals; Antioxidants; Body Weight; Coenzymes; Diet; Diterpenes; Drug Evaluation, Preclinical; Ethanol; Liver; Liver Diseases, Alcoholic; Lovastatin; Organ Size; Oxidative Stress; Rats; Rats, Sprague-Dawley; Retinyl Esters; Thiobarbituric Acid Reactive Substances; Ubiquinone; Vitamin A; Vitamin E

1994