coenzyme-q10 and myxothiazol

coenzyme-q10 has been researched along with myxothiazol* in 5 studies

Other Studies

5 other study(ies) available for coenzyme-q10 and myxothiazol

ArticleYear
Saccharomyces cerevisiae coq10 null mutants are responsive to antimycin A.
    The FEBS journal, 2010, Volume: 277, Issue:21

    Deletion of COQ10 in Saccharomyces cerevisiae elicits a respiratory defect characterized by the absence of cytochrome c reduction, which is correctable by the addition of exogenous diffusible coenzyme Q(2). Unlike other coq mutants with hampered coenzyme Q(6) (Q(6) ) synthesis, coq10 mutants have near wild-type concentrations of Q(6). In the present study, we used Q-cycle inhibitors of the coenzyme QH(2)-cytochrome c reductase complex to assess the electron transfer properties of coq10 cells. Our results show that coq10 mutants respond to antimycin A, indicating an active Q-cycle in these mutants, even though they are unable to transport electrons through cytochrome c and are not responsive to myxothiazol. EPR spectroscopic analysis also suggests that wild-type and coq10 mitochondria accumulate similar amounts of Q(6) semiquinone, despite a lower steady-state level of coenzyme QH(2)-cytochrome c reductase complex in the coq10 cells. Confirming the reduced respiratory chain state in coq10 cells, we found that the expression of the Aspergillus fumigatus alternative oxidase in these cells leads to a decrease in antimycin-dependent H(2)O(2) release and improves their respiratory growth.

    Topics: Antifungal Agents; Antimycin A; Aspergillus fumigatus; Cytochrome c Group; Electron Spin Resonance Spectroscopy; Electron Transport; Hydrogen Peroxide; Immunoblotting; Methacrylates; Mitochondria; Mitochondrial Proteins; Mutation; Oxidation-Reduction; Oxidoreductases; Oxygen Consumption; Plant Proteins; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Superoxides; Thiazoles; Ubiquinone

2010
Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex III.
    Anesthesia and analgesia, 2004, Volume: 99, Issue:5

    Reactive oxygen species (ROS) mediate volatile anesthetic preconditioning. We tested the hypothesis that isoflurane (ISO) generates ROS from electron transport chain complexes I and III. Rabbits (n = 55) underwent 30 min coronary artery occlusion followed by 3 h reperfusion and received 0.9% saline, the complex I inhibitor diphenyleneiodonium (DPI; 1.5 mg/kg bolus followed by 1.5 mg/kg over 1 h), or the complex III inhibitor myxothiazol (MYX; 0.1 mg/kg bolus followed by 0.3 mg/kg over 1 h) in the absence and presence of 1.0 minimum alveolar concentration ISO. ISO was administered for 30 min and discontinued 15 min before coronary occlusion. Infarct size and ROS production (n = 32) were determined using triphenyltetrazolium staining and ethidium-DNA fluorescence, respectively. Adenosine triphosphate (ATP) synthesis in mitochondria obtained from rabbit hearts (n = 24) subjected to drug interventions was measured by luciferin-luciferase luminometry. ISO significantly (P < 0.05) reduced infarct size (19% +/- 4%) as compared with control (39% +/- 4%). MYX (35% +/- 4%), but not DPI (24% +/- 2%), abolished this protection. ISO increased ethidium-DNA fluorescence (83 +/- 11 U) as compared with control (40 +/- 12 U). MYX (35 +/- 3 U), but not DPI (78 +/- 9 U), abolished ROS generation. DPI and MYX selectively reduced complex I- and complex III-mediated ATP synthesis, respectively. ROS generated from electron transport chain complex III mediate ISO-induced cardioprotection.

    Topics: Adenosine Triphosphate; Anesthetics, Inhalation; Animals; Coenzymes; Electron Transport; Enzyme Inhibitors; Hemodynamics; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Isoflurane; Male; Methacrylates; Mitochondria, Heart; Myocardial Infarction; NADH Dehydrogenase; Onium Compounds; Rabbits; Reactive Oxygen Species; Thiazoles; Ubiquinone; Ventricular Function, Left

2004
EPR characterization of the cytochrome b-c1 complex from Rhodobacter sphaeroides.
    Biochimica et biophysica acta, 1990, Nov-05, Volume: 1020, Issue:2

    EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)

    Topics: Antimycin A; Coenzymes; Cytochrome b Group; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Iron-Sulfur Proteins; Methacrylates; Oxidation-Reduction; Rhodobacter sphaeroides; Thiazoles; Ubiquinone

1990
Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.
    Archives of biochemistry and biophysics, 1985, Volume: 237, Issue:2

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-.

    Topics: Animals; Antimycin A; Coenzymes; Cytochrome b Group; Cytochrome c Group; Electron Transport; Electron Transport Complex III; Hydrogen Peroxide; In Vitro Techniques; Methacrylates; Mitochondria, Heart; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxygen Consumption; Quinone Reductases; Rats; Succinates; Superoxides; Thiazoles; Ubiquinone

1985
Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function.
    Biochimica et biophysica acta, 1984, Oct-26, Volume: 767, Issue:1

    Two different bypasses around the antimycin block of electron transport from succinate to cytochrome c via the ubiquinol-cytochrome c oxidoreductase of intact rat liver mitochondria were analyzed, one promoted by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and the other by 2,6-dichlorophenolindophenol (DCIP). Both bypasses are inhibited by myxothiazol, which blocks electron flow from ubiquinol to the Rieske iron-sulfur center, and by 2-hydroxy-3-undecyl-1,4-naphthoquinone, which inhibits electron flow from the iron-sulfur center to cytochrome c1. In the bypass promoted by TMPD its oxidized form (Wurster's blue) acts as an electron acceptor from some reduced component prior to the antimycin block, which by exclusion of other possibilities is ubisemiquinone. In the DCIP bypass its reduced form acts as an electron donor, by reducing ubisemiquinone to ubiquinol; reduced DCIP is regenerated again at the expense of either succinate or ascorbate. The observations described are consistent with and support current models of the Q cycle. Bypasses promoted by artificial electron carriers provide an independent approach to analysis of electron flow through ubiquinol-cytochrome c oxidoreductase.

    Topics: 2,6-Dichloroindophenol; Animals; Antimycin A; Coenzymes; Cytochrome b Group; Cytochrome c Group; Electron Transport; Electron Transport Complex III; Methacrylates; Mitochondria, Liver; Multienzyme Complexes; Naphthoquinones; Quinone Reductases; Rats; Succinates; Succinic Acid; Tetramethylphenylenediamine; Thiazoles; Ubiquinone

1984