cobamamide has been researched along with corrin* in 5 studies
5 other study(ies) available for cobamamide and corrin
Article | Year |
---|---|
Direct Participation of a Peripheral Side Chain of a Corrin Ring in Coenzyme B
Topics: Binding Sites; Catalysis; Cobamides; Corrinoids; Crystallography, X-Ray; Hydrogen Bonding; Kinetics; Models, Molecular; Protein Conformation | 2018 |
Corrin ring-induced redox tuning.
The density functional calculations suggest that the expansion of the corrin macrocycle's N(4) core by 0.06-0.10 Å leads to an appreciable lowering of 100-150 mV vs. saturated calomel electrode in the reduction potentials of two biologically important B(12) cofactors namely methylcobalamin and adenosylcobalamin respectively. This redox tuning of B(12) cofactors may encourage the electron transfer-based activation mechanism for B(12)-dependent enzymes. Topics: Cobamides; Corrinoids; Models, Molecular; Molecular Conformation; Oxidation-Reduction; Vitamin B 12 | 2012 |
Ultrafast infrared spectral fingerprints of vitamin B12 and related cobalamins.
Vitamin B(12) (cyanocobalamin, CNCbl) and its derivatives are structurally complex and functionally diverse biomolecules. The excited state and radical pair reaction dynamics that follow their photoexcitation have been previously studied in detail using UV-visible techniques. Similar time-resolved infrared (TRIR) data are limited, however. Herein we present TRIR difference spectra in the 1300-1700 cm(-1) region between 2 ps and 2 ns for adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), CNCbl, and hydroxocobalamin (OHCbl). The spectral profiles of all four cobalamins are complex, with broad similarities that suggest the vibrational excited states are related, but with a number of identifiable variations. The majority of the signals from AdoCbl and MeCbl decay with kinetics similar to those reported in the literature from UV-visible studies. However, there are regions of rapid (<10 ps) vibrational relaxation (peak shifts to higher frequencies from 1551, 1442, and 1337 cm(-1)) that are more pronounced in AdoCbl than in MeCbl. The AdoCbl data also exhibit more substantial changes in the amide I region and a number of more gradual peak shifts elsewhere (e.g., from 1549 to 1563 cm(-1)), which are not apparent in the MeCbl data. We attribute these differences to interactions between the bulky adenosyl and the corrin ring after photoexcitation and during radical pair recombination, respectively. Although spectrally similar to the initial excited state, the long-lived metal-to-ligand charge transfer state of MeCbl is clearly resolved in the kinetic analysis. The excited states of CNCbl and OHCbl relax to the ground state within 40 ps with few significant peak shifts, suggesting little or no homolysis of the bond between the Co and the upper axial ligand. Difference spectra from density functional theory calculations (where spectra from simplified cobalamins with an upper axial methyl were subtracted from those without) show qualitative agreement with the experimental data. They imply the excited state intermediates in the TRIR difference spectra resemble the dissociated states vibrationally (the cobalamin with the upper axial ligand missing) relative to the ground state with a methyl in this position. They also indicate that most of the TRIR signals arise from vibrations involving some degree of motion in the corrin ring. Such coupling of motions throughout the ring makes specific peak assignments neither trivial nor always meaningful, suggesting our data shoul Topics: Cobamides; Corrinoids; Hydroxocobalamin; Kinetics; Ligands; Molecular Dynamics Simulation; Molecular Structure; Photolysis; Quantum Theory; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Vibration; Vitamin B 12 | 2012 |
Identification, characterization, and structure/function analysis of a corrin reductase involved in adenosylcobalamin biosynthesis.
Vitamin B(12), the antipernicious anemia factor, is the cyano derivative of adenosylcobalamin, which is one of nature's most complex coenzymes. Adenosylcobalamin is made along one of two similar yet distinct metabolic pathways, which are referred to as the aerobic and anaerobic routes. The aerobic pathway for cobalamin biosynthesis proceeds via cobalt insertion into a ring-contracted macrocycle, which is closely followed by adenosylation of the cobalt ion. An important prerequisite for adenosylation is the reduction of the centrally chelated metal from Co(II) to a highly nucleophilic Co(I) form. We have cloned a gene, cobR, encoding a biosynthetic enzyme with this co(II)rrin reductase activity from Brucella melitensis. The protein has been overproduced, and the resulting flavoprotein has been purified, characterized, and crystallized and its structure determined to 1.6A resolution. Kinetic and EPR analysis reveals that the enzyme proceeds via a semiquinone form. It is proposed that CobR may interact with the adenosyltransferase to overcome the large thermodynamic barrier required for co(II)rrin reduction. Topics: Brucella melitensis; Cloning, Molecular; Cobalt; Cobamides; Corrinoids; Crystallography, X-Ray; Electron Spin Resonance Spectroscopy; Ions; Kinetics; Models, Chemical; Molecular Conformation; Oxidoreductases; Structure-Activity Relationship; Thermodynamics; Vitamin B 12 | 2008 |
First principles study of coenzyme B12. Crystal packing forces effect on axial bond lengths.
In this work we analyze the structure of coenzyme B12 (AdoCbl) by means of periodic density functional theory (DFT) in order to elucidate the influence of the corrin side chains and the crystalline environment on the properties of axial bonds. The Co-Nax axial bond is very weak and its strength of less than 8 kcal/mol is four times smaller than Co-C which in solution is approximately 31 kcal/mol. The proper description of the Co-Nax distance has been problematic in previous DFT calculations and the source of disagreement between experiment and theory remained unexplained. To resolve this discrepancy, periodic DFT calculations within the Car-Parrinello molecular dynamics (CPMD) framework were carried out on three different structural models of increased complexity. The simplest model (DBI-Ado+) contains the naked corrin ring with a total of 96 atoms. The second model is the full coenzyme B12 (AdoCbl) with 209 atoms which has been taken from crystallographic analysis. To understand the extent to which the crystal packing forces influence the structural properties of AdoCbl the complete crystal consisting of four AdoCbl molecules plus 48 water molecules periodically repeated in space was analyzed (1008 atoms). The results show that the properties associated with the Co-C bond can be well reproduced using truncated models. This does not apply to the Co-Nax axial bond and the presence of the local environment appears to be essential for the correct prediction of its bond length. The most interesting outcome of the present analysis is the finding that the actual length of the Co-Nax bond (2.262 A) is largely influenced by crystal packing forces. Topics: Chemical Phenomena; Chemistry, Physical; Cobamides; Corrinoids; Crystallization; Crystallography, X-Ray; Hydrogen Bonding; Models, Molecular | 2007 |