cobamamide and 1-3-propanediol

cobamamide has been researched along with 1-3-propanediol* in 6 studies

Reviews

2 review(s) available for cobamamide and 1-3-propanediol

ArticleYear
Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains.
    Applied biochemistry and biotechnology, 2016, Volume: 179, Issue:6

    To date, two types of glycerol dehydratases have been reported: coenzyme B12-dependent and coenzyme B12-independent glycerol dehydratases. The three-dimensional structure of the former is a dimer of αβγ heterotrimer, while that of the latter is a homodimer. Their mechanisms of reaction are typically enzymatic radical catalysis. Functional radical in both the glycerol dehydratases is the adenosyl radical. However, the adenosyl radical in the former originates from coenzyme B12 by homolytic cleavage, and that in the latter from S-adenosyl-methionine. Until some years ago, Clostridium butyricum VPI 1718 was the only microorganism known to possess B12-independent glycerol dehydratase, but since then, several other bacteria with this unique capability have been identified. This article focuses on the glycerol dehydratases and on 1,3-propanediol production from glycerol by naturally occurring and genetically engineered bacterial strains containing glycerol dehydratase.

    Topics: Catalysis; Cobamides; Escherichia coli; Genetic Engineering; Hydro-Lyases; Klebsiella pneumoniae; Propylene Glycol; Propylene Glycols; Protein Conformation

2016
Metabolic engineering for the microbial production of 1,3-propanediol.
    Current opinion in biotechnology, 2003, Volume: 14, Issue:5

    Improvements in the biological production of 1,3-propanediol, a key component of an emerging polymer business, have been realized. Utilizing genes from natural strains that produce 1,3-propanediol from glycerol, metabolic engineering has enabled the development of a recombinant strain that utilizes the lower cost feedstock D-glucose. This accomplishment bodes well for future metabolic engineering efforts and, ultimately, for increased societal benefit obtained through the production of chemicals from renewable resources.

    Topics: Bacteria; Biological Transport; Catalysis; Cobamides; Fermentation; Glucose; Industrial Microbiology; Propylene Glycols; Protein Engineering

2003

Other Studies

4 other study(ies) available for cobamamide and 1-3-propanediol

ArticleYear
Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli.
    Journal of bioscience and bioengineering, 2016, Volume: 122, Issue:4

    Fermentative production of 1-propanol, which is one of the promising precursors of polypropylene production, from d-glucose, l-rhamnose and glycerol using metabolically engineered Escherichia coli was examined. To confer the ability to produce 1-propanol from 1,2-propanediol (1,2-PD) in recombinant E. coli, a part of the pdu regulon including the diol dehydratase and the propanol dehydrogenase genes together with the adenosylcobalamin (AdoCbl) regeneration enzyme genes of Klebsiella pneumoniae was cloned, and an expression vector for these genes (pRSF_pduCDEGHOQS) was constructed. Recombinant E. coli harboring pRSF_pduCDEGHOQS with 1,2-PD synthetic pathway (pKK_mde) genes, which was constructed in our previous report (Urano et al., Appl. Microbiol. Biotechnol., 99, 2001-2008, 2015), produced 16.1 mM of 1-propanol from d-glucose with a molar yield of 0.36 mol/mol after 72 h cultivation. 29.9 mM of 1-propanol was formed from l-rhamnose with a molar yield of 0.81 mol/mol using E. coli carrying only pRSF_pduCDEGHOQS. In addition, 1-propanol production from glycerol was achieved by addition of the ATP-dependent dihydroxyacetone kinase gene to E. coli harboring pKK_mde and pRSF_pduCDEGOQS. In all cases, 1-propanol production was achieved by adding only a small amount of AdoCbl.

    Topics: 1-Propanol; Cobamides; Escherichia coli; Fermentation; Genes, Bacterial; Glucose; Glycerol; Klebsiella pneumoniae; Metabolic Engineering; Phosphotransferases (Alcohol Group Acceptor); Propanediol Dehydratase; Propylene Glycols; Rhamnose

2016
Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions.
    Biotechnology journal, 2014, Volume: 9, Issue:12

    Coenzyme B12 (Vitamin B12 ) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen-dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12 . These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real-time PCR, SDS-PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12 . However, according to the quantitative determination by inductively coupled plasma-mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13-fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen-dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions.

    Topics: Aerobiosis; Anaerobiosis; Bioreactors; Cobamides; Culture Media; Escherichia coli; Genes, Bacterial; Lactic Acid; Metabolic Engineering; Propylene Glycols; Pseudomonas

2014
Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures.
    Applied and environmental microbiology, 2003, Volume: 69, Issue:6

    To isolate genes encoding coenzyme B(12)-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and inhibition by 1,3-propanediol into account, the hybrid diol dehydratase produced by E. coli Bl21/pAK5.1 exhibited the best properties of all tested enzymes for application in the biotechnological production of 1,3-propanediol.

    Topics: Amino Acid Sequence; Bacteria; Biotechnology; Cobamides; Culture Media; Escherichia coli; Fresh Water; Gene Library; Genome, Bacterial; Geologic Sediments; Hydro-Lyases; Molecular Sequence Data; Propanediol Dehydratase; Propylene Glycols; Soil Microbiology

2003
Construction and characterization of a 1,3-propanediol operon.
    Applied and environmental microbiology, 1998, Volume: 64, Issue:1

    The genes for the production of 1,3-propanediol (1,3-PD) in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, are naturally under the control of two different promoters and are transcribed in different directions. These genes were reconfigured into an operon containing dhaB followed by dhaT under the control of a single promoter. The operon contains unique restriction sites to facilitate replacement of the promoter and other modifications. In a fed-batch cofermentation of glycerol and glucose. Escherichia coli containing the operon consumed 9.3 g of glycerol per liter and produced 6.3 g of 1,3-PD per liter. The fermentation had two distinct phases. In the first phase, significant cell growth occurred and the products were mainly 1,3-PD and acetate. In the second phase, very little growth occurred and the main products were 1,3-PD and pyruvate. The first enzyme in the 1,3-PD pathway, glycerol dehydratase, requires coenzyme B12, which must be provided in E. coli fermentations. However, the amount of coenzyme B12 needed was quite small, with 10 nM sufficient for good 1,3-PD production in batch cofermentations. 1,3-PD is a useful intermediate in the production of polyesters. The 1,3-PD operon was designed so that it can be readily modified for expression in other prokaryotic hosts; therefore, it is useful for metabolic engineering of 1,3-PD pathways from glycerol and other substrates such as glucose.

    Topics: Acetates; Alcohol Oxidoreductases; Chromatography, High Pressure Liquid; Cloning, Molecular; Cobamides; DNA, Bacterial; Escherichia coli; Fermentation; Gene Expression; Genes, Bacterial; Glucose; Glycerol; Hydro-Lyases; Klebsiella pneumoniae; Open Reading Frames; Operon; Plasmids; Promoter Regions, Genetic; Propylene Glycols; Pyruvic Acid; Recombination, Genetic; Sequence Analysis, DNA; Transcription, Genetic

1998