cobalt-tetrasulfophthalocyanine has been researched along with 1-methyl-3-octylimidazolium-bromide* in 1 studies
1 other study(ies) available for cobalt-tetrasulfophthalocyanine and 1-methyl-3-octylimidazolium-bromide
Article | Year |
---|---|
Ultrasensitive biosensor for detection of organophosphorus pesticides based on a macrocycle complex/carbon nanotubes composite and 1-methyl-3-octylimidazolium tetrafluoroborate as binder compound.
This work describes the highly sensitive detection of organophosphorus pesticides employing the cobalt(II) 4,4,4,4-tetrasulfo-phthalocyanine (CoTSPc) macrocycle complex, carbon nanotubes (CNT), and 1-methyl-3-octylimidazolium tetrafluoroborate (OMIM[BF4]). The technique is based on enzyme acetylcholinesterase (AChE) inhibition. The composite was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and amperometry. The AChE was immobilized on the composite electrode surface by cross-linking with glutaraldehyde and chitosan. The synergistic action of the CoTSPc/CNT/OMIM[BF4] composite showed excellent electrocatalytic activity, with a low applied potential for the amperometric detection of thiocholine (TCh) at 0.0 V vs. Ag/AgCl. The calculated catalytic rate constant, k(cat), was 3.67 × 10(3) mol(-1) L s(-1). Under the optimum conditions, the inhibition rates of these pesticides were proportional to their concentrations in the ranges of 1.0 pmol L(-1) to 1.0 nmol L(-1) (fenitrothion), 2.0 pmol L(-1) to 8.0 nmol L(-1) (dichlorvos), and 16 pmol L(-1) to 5.0 nmol L(-1) (malathion). Topics: Acetylcholinesterase; Biosensing Techniques; Electrochemistry; Electrodes; Enzymes, Immobilized; Imidazoles; Indoles; Nanotubes, Carbon; Organometallic Compounds; Organophosphorus Compounds; Pesticides | 2015 |