clozapine and tert-butylbicyclophosphorothionate

clozapine has been researched along with tert-butylbicyclophosphorothionate* in 3 studies

Other Studies

3 other study(ies) available for clozapine and tert-butylbicyclophosphorothionate

ArticleYear
Clozapine's antipsychotic effects do not depend on blockade of 5-HT3 receptors.
    Neurochemical research, 1999, Volume: 24, Issue:5

    Sixteen known 5-HT3 receptor blockers, including clozapine, fully or partially reverse the inhibitory effect of 1 microM GABA on [35S]TBPS binding, indicating that they are also GABA(A) antagonists, some of them selective for subsets of GABA(A) receptors. The 5-HT3 receptor blocker, ondansetron, has been reported to produce some antipsychotic and anxiolytic effects. However, no antipsychotic effects have been reported for a large number of highly potent 5-HT3 receptor blockers. Like clozapine, ondansetron partially reverses the inhibitory effect of GABA on [35S]TBPS binding. Additivity experiments suggest that ten 5-HT3 receptor blockers tested at low concentrations preferentially block subtypes of GABA(A) receptors that are among those blocked by clozapine. Wiley and Porter (29) reported that MDL-72222, the most potent GABA(A) antagonist described here, partially generalizes (71%) with clozapine in rats trained to discriminate an interoceptive clozapine stimulus, but only at a dose that severely decreases responding. Tropisetron (ICS-205,930) exhibits both GABA-positive and GABA-negative effects. R-(+)-zacopride is 6-fold more potent than S-(-)-zacopride as a GABA(A) antagonist. We conclude that the observed antipsychotic and, possibly, anxiolytic effects of some 5-HT3 receptor blockers are due to selective antagonism of certain GABA(A) receptors, and not to blockade of 5-HT3 receptors. We speculate that the anxiolytic and sedative effects of clozapine and several other antipsychotic drugs may be due to selective blockade of alpha1beta2gamma2 GABA(A) receptors which are preferentially located on certain types of GABAergic interneurons (probably parvalbumin positive). Blockade of these receptors will increase the inhibitory output of these interneurons. So far, no highly potent GABA(A) antagonists with clozapine-like selectivity have been identified. Such compounds may exhibit improved clozapine-like antipsychotic activity.

    Topics: Animals; Antipsychotic Agents; Benzamides; Bridged Bicyclo Compounds, Heterocyclic; Clozapine; Drug Interactions; Female; GABA Antagonists; gamma-Aminobutyric Acid; Male; Ondansetron; Quinacrine; Quipazine; Rats; Rats, Sprague-Dawley; Receptors, Serotonin; Receptors, Serotonin, 5-HT3; Serotonin Antagonists; Sulfur Radioisotopes; Tropanes

1999
Clozapine and some other antipsychotic drugs may preferentially block the same subset of GABA(A) receptors.
    Neurochemical research, 1997, Volume: 22, Issue:2

    Selective blockade of a subset of GABA(A) receptors may be involved in the antipsychotic effects of Clozapine and several other antipsychotic drugs. Seven antipsychotic drugs, and 11 drugs classified as antidepressants that only partially reverse the inhibitory effect of 1 microM GABA on [35S]TBPS binding, do not yield additive reversal when tested pairwise with Clozapine, which also only partially reverses the inhibitory effect of GABA. This suggests that all of these antipsychotic/antidepressant drugs may block a common subset of GABA(A) receptors. DMCM and Ro 5-4864 are also partial reversers of GABA's inhibitory effect, but they yield additive reversals when tested pairwise with the antipsychotic/antidepressant drugs, and also with each other, suggesting that DMCM, Ro 5-4864, and the antipsychotic drugs define three heterogeneous subsets of GABA(A) receptors, with variable overlap, depending on the drug. Several potent ligands for benzodiazepine binding sites can block the GABA inhibitory effects of DMCM and Ro 5-4864, but with different patterns: the ligands generally blocked DMCM less potently, but more completely than Ro 5-4864. Ro 5-4864 was not blocked by Flumazenil or CGS-8216, ligands that potently blocked DMCM. Nine additional antipsychotic/antidepressant drugs, as well as Clozapine, and 7 "classical" GABA(A) receptor blockers, all of which reversed GABA nearly completely, when tested at lower concentrations that only reverse approximately 20-35%, yielded almost complete additivity when tested pairwise with DMCM or Ro 54864. Another convulsant benzodiazepine, KW-1937, a positional isomer of Brotizolam, fully reverses the inhibitory effect of 1 microM GABA. At a lower concentration yielding about 50% reversal, KW-1937 is completely additive with DMCM, but entirely nonadditive with Ro 5-4864. The 50% reversal obtained with KW-1937 was potently blocked by Triazolam, but with a plateau similar to that obtained with Ro 5-4864. The results with KW- 1937 suggest that its 50% reversal largely corresponds to the reversal obtained with Ro 5-4864, and that virtually all of the [35S]TBPS binding sites inhibited by 1 microM GABA are coupled to benzodiazepine binding sites. The fraction of GABA(A) receptors preferentially blocked by all the antipsychotic/antidepressant drugs, roughly 25% of the [35S]TBPS binding sites inhibited with 1 microM GABA, are sensitive to KW-1937, but not to DMCM or to Ro 5-4864.

    Topics: Animals; Antidepressive Agents; Antipsychotic Agents; Benzodiazepines; Benzodiazepinones; Bridged Bicyclo Compounds, Heterocyclic; Carbolines; Clozapine; Drug Synergism; GABA Antagonists; gamma-Aminobutyric Acid; Naloxone; Prosencephalon; Rats; Receptors, GABA

1997
Subtype specificity of gamma-aminobutyric acid type A receptor antagonism by clozapine.
    Naunyn-Schmiedeberg's archives of pharmacology, 1995, Volume: 352, Issue:4

    Clozapine, an atypical neuroleptic, functionally antagonizes the gamma-aminobutyric acid-induced chloride uptake via the main central inhibitory receptor, gamma-aminobutyric acid type A (GABAA) receptor, in brain vesicles. GABAA antagonism by micromolar concentrations of clozapine is more efficient in rat cerebrocortical and hippocampal membranes than in cerebellar membranes, as evidenced by clozapine reversal GABA-inhibition of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding. A typical neuroleptic, haloperidol, failed to antagonize GABA in any of these brain regions, while the specific GABAA antagonist 2'-(3'-carboxy-2',3'-propyl)-3-amino-6-p -methoxyphenylpyrazinium bromide (SR 95531) was efficient in all three brain regions. Clozapine action on [35S]TBPS binding was unaffected by the benzodiazepine receptor antagonist flumazenil. Clozapine inhibited the binding of [3H]muscimol and [3H]SR 95531 to the GABA recognition site, but this effect only partially correlated with the regional differences in and the potency of clozapine antagonism of GABA-inhibition of [35S]TBPS binding, suggesting that also other than GABA sites may mediate clozapine actions. Autoradiography of [35S]TBPS binding revealed GABA antagonism by clozapine in most brain regions. Main exceptions were cerebellar granule cell and molecular layers, olfactory bulb external plexiform and glomerular layers and primary olfactory cortex, where clozapine antagonized GABA inhibition less than average, and lateral hypothalamic and preoptic areas where its antagonism was greater than average. Recombinant alpha 6 beta 2 gamma 2 receptors, the predominant alpha 6 subunit-containing receptor subtype in cerebellar granule cells, failed to show GABA antagonism by clozapine up to 100 microM. In contrast, recombinant alpha 1 beta 2 gamma 2 receptors, forming the predominant receptor subtype in the brain, were clozapine sensitive. Recombinant alpha 6 beta 2 gamma 2 and alpha 6 beta 3 gamma 2 receptors resulted in clozapine-insensitive receptors, whereas alpha 6 beta 1 gamma 2 receptors were clozapine sensitive. The efficacy of clozapine to antagonize GABA in alpha 1 beta x gamma 2 receptors decreased in the order of alpha 1 beta 1 gamma 2 > alpha 1 beta 2 gamma 2> alpha 1 beta 3 gamma 2. The results indicate that clozapine antagonizes the function of most GABAA receptor subtypes, and that the interaction is determined by the interaction of the alpha and beta subunit variants. GABA antagonism is a u

    Topics: Animals; Antipsychotic Agents; Brain; Bridged Bicyclo Compounds, Heterocyclic; Clozapine; GABA Antagonists; GABA-A Receptor Antagonists; Male; Muscimol; Pyridazines; Rats; Rats, Wistar; Receptors, GABA-A

1995