clozapine has been researched along with epidepride* in 5 studies
5 other study(ies) available for clozapine and epidepride
Article | Year |
---|---|
Dopamine D2/3 receptor binding potential and occupancy in midbrain and temporal cortex by haloperidol, olanzapine and clozapine.
Aberrant dopamine transmission in extrastriatal brain regions has been repeatedly illustrated among patients with schizophrenia. Differences between typical and second-generation antipsychotics in dopamine D(2) receptor modulation within various brain areas remain a topic for debate. The aim of the present study was therefore to investigate dopamine D(2/3) receptor apparent binding potential (BP(app)) and occupancy in midbrain and temporal cortex among clozapine-, olanzapine- and haloperidol-treated schizophrenia patients.. Dopamine D(2/3) binding was studied on single-photon emission computed tomography ligand [(123)I]epidepride in 13 schizophrenia patients treated with medication (two with haloperidol, four with olanzapine and seven with clozapine), six drug-naïve patients and seven healthy controls.. Statistically significant differences in midbrain dopamine D(2/3) receptor BP(app) (P = 0.015) and occupancy (P = 0.016) were observed between the clozapine, olanzapine and haloperidol groups. The lowest occupancy was found in clozapine-treated patients (5%), followed by olanzapine-treated patients (28%), compared to haloperidol-treated patients (40%). No significant differences were observed in the temporal poles. Occupancy changed substantially depending on the comparison group used (either drug-naïve vs healthy controls) in the examined brain areas (P = 0.001), showing an overestimation with all antipsychotics when the healthy control group was used.. Both typical and second-generation antipsychotics occupy cortical dopamine D(2/3) receptors, thus mediating therapeutic efficacy. Observed differences in midbrain dopamine D(2/3) occupancy between classical antipsychotics and second-generation antipsychotics may have clinical relevance by modulating altered nigrostriatal dopamine neurotransmission during the acute phase of schizophrenia. Topics: Adult; Antipsychotic Agents; Benzamides; Benzodiazepines; Clozapine; Female; Haloperidol; Humans; Iodine Radioisotopes; Male; Mesencephalon; Middle Aged; Olanzapine; Pyrrolidines; Receptors, Dopamine D2; Receptors, Dopamine D3; Schizophrenia; Temporal Lobe; Tomography, Emission-Computed, Single-Photon | 2009 |
Striatal and extra-striatal D(2)/D(3) dopamine receptor occupancy by quetiapine in vivo. [(123)I]-epidepride single photon emission tomography(SPET) study.
Selective action at limbic cortical dopamine D(2)-like receptors could mediate atypical antipsychotic efficacy with few extrapyramidal side-effects.. To test the hypothesis that quetiapine has 'limbic selective' D(2)/D(3) receptor occupancy in vivo.. The high-affinity D(2)/D(3) ligand [(123)I]-epidepride and single photon emission tomography were used to estimate D(2)/D(3) specific binding and an index of relative percentage D(2)/D(3) occupancy in striatal and temporal cortical regions for quetiapine-treated patients (n=6). Quetiapine-, and previously studied typical-antipsychotic- and clozapine-treated patients were compared.. Mean (s.d.) relative percentage D(2)/D(3) receptor occupancy by quetiapine was 32.0% (14.6) in striatum and 60.1% (17.2) in temporal cortex (mean daily dose 450 mg: range 300-700 mg/day). Quetiapine treatment resulted in limbic selective D(2)/D(3) blockade similar to clozapine and significantly higher than typical antipsychotics.. Preliminary data suggest that limbic selective D(2)/D(3) receptor blockade is important for atypical drug action. Topics: Adult; Antipsychotic Agents; Benzamides; Clozapine; Corpus Striatum; Dibenzothiazepines; Female; Humans; Iodine Radioisotopes; Male; Middle Aged; Pyrrolidines; Quetiapine Fumarate; Receptors, Dopamine D2; Receptors, Dopamine D3; Temporal Lobe; Tomography, Emission-Computed, Single-Photon | 2000 |
A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex.
The potencies of the major neuroleptics used in the treatment of schizophrenia, including haloperidol and remoxipride, correlate with their ability to bind D2-dopaminergic receptors in subcortical structures. On the other hand, the neuroleptic clozapine has a low affinity for these sites, and the pharmacological basis of its beneficial action is less clear. We have found that chronic treatment with clozapine, haloperidol, and remoxipride up-regulates D2 receptors in specific cortical areas of the rhesus monkey frontal, parietal, temporal, and occipital lobes. Of particular interest, all three neuroleptics down-regulated D1 receptors in prefrontal and temporal association regions--the two areas most often associated with schizophrenia. This latter finding raises the possibility that down-regulation of D1 receptors in prefrontal and temporal cortex may be an important component of the therapeutic response to neuroleptic drugs. Further, the common effects of three neuroleptics with different pharmacological profiles in the cerebral cortex is consistent with the idea that this structure is a major therapeutic target in the treatment of schizophrenia. Topics: Analysis of Variance; Animals; Autoradiography; Benzamides; Benzazepines; Cerebral Cortex; Clozapine; Haloperidol; Iodine Radioisotopes; Kinetics; Macaca mulatta; Motor Cortex; Prefrontal Cortex; Pyrrolidines; Receptors, Dopamine D1; Receptors, Dopamine D2; Remoxipride; Schizophrenia; Somatosensory Cortex; Temporal Lobe; Tritium; Visual Cortex | 1994 |
Effect of haloperidol and clozapine on the density of "perforated" synapses in caudate, nucleus accumbens, and medial prefrontal cortex.
Perforated synapses, which contain a discontinuous density along the postsynaptic membrane, can increase or decrease in numbers following various behavioral and biochemical manipulations. We have previously established that 14-day treatment with haloperidol causes an increase in the number of perforated synapses within the caudate nucleus (dorsolateral region) but not the nucleus accumbens (Meshul and Casey 1989). This effect was reversed if the animals were withdrawn from the drug for an equivalent period of time. We have now further examined the effects of haloperidol administration, which is associated with a high incidence of extrapyramidal side effects (EPS) and tardive dyskinesia (TD), and assessed the effects of clozapine, which appears to have a lower potential for inducing EPS and TD. Administration of haloperidol for 2 weeks significantly increased the percentage of perforated synapses in the caudate, but not in the nucleus accumbens or layer VI of medial prefrontal cortex (MPCx). There was an increase in specific [125I]epidepride binding to D-2 receptors in the caudate nucleus and MPCx following haloperidol. Administration of clozapine for 2 weeks did not affect the percentage of perforated synapses in any of the three dopamine (DA)-rich regions that were examined. There was an increase in specific [3H]SCH 23390 binding to D-1 receptors and in specific [125I]epidepride binding to D-2 receptors only within MPCx following clozapine.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Benzamides; Benzazepines; Brain; Caudate Nucleus; Clozapine; Dopamine Antagonists; Dyskinesia, Drug-Induced; Frontal Lobe; Haloperidol; Male; Microscopy, Electron; Nucleus Accumbens; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Dopamine D1; Receptors, Dopamine D2; Synapses | 1992 |
Extrastriatal dopamine D2 receptors: distribution, pharmacological characterization and region-specific regulation by clozapine.
The distribution of dopamine D2 receptors in the rat brain was determined by quantitative autoradiography of the binding of [125I]epidepride and the effects of chronic drug administration on regulation of receptors in striatal and extrastriatal brain regions were characterized. [125I]Epidepride (2200 Ci/mmol) bound with high affinity to coronal tissue sections from the rat brain (Kd = 78 pM), and specific binding was detected in a number of discrete layers, nuclei or regions of the hippocampus, thalamus, cerebellum and other extrastriatal sites. Pharmacological analysis of radioligand binding to hippocampal and cerebellar membranes indicated binding to dopamine D2 receptors, and approximately 10% of the binding appeared to represent low affinity idazoxan-displaceable binding to alpha-2 adrenoceptors. The binding to extrastriatal regions resembled previously reported radioligand binding to dopamine D2 receptors in striatal and cortical membranes. Chronic (14 day) administration of two dopamine D2 receptor antagonists, either the typical neuroleptic haloperidol (1.5 mg/kg i.p.) or the atypical neuroleptic clozapine (30 mg/kg i.p.), caused a significant increase in the density of [125I]epidepride binding sites in the medial prefrontal cortex and parietal cortex. Only haloperidol caused a significant increase in the density of [3H]spiperone and [125I]epidepride binding sites in the striatum and a slight increase in [125I]epidepride binding sites in the hippocampus. Similar administration of amphetamine (5 mg/kg i.p.) had no significant effect on the density of dopamine D2 receptors in any brain region examined. In addition, no drug-induced changes in the characteristics of dopamine D2 receptors in discrete areas of the cerebellum were observed.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Amphetamine; Animals; Autoradiography; Benzamides; Brain; Clozapine; Haloperidol; Male; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Dopamine; Receptors, Dopamine D2; Spiperone | 1992 |