cloprostenol has been researched along with altrenogest* in 4 studies
3 trial(s) available for cloprostenol and altrenogest
Article | Year |
---|---|
Altrenogest treatment associated with a farrowing induction protocol to avoid early parturition in sows.
This study investigated the effect of altrenogest treatment on the farrowing development of sows, and birth weight (BW) and piglet survival until the third day of life. Three control groups were used: (i) sows that farrowed spontaneously before 114 day of gestation (CONT <114); (ii) sows that spontaneously farrowed at ≥114 day of gestation (CONT ≥114); (iii) sows that farrowed at ≥114 day with cloprostenol treatment (CONTCLOPR). Other sows were treated with altrenogest (Regumate(®) ) for 3 days (days 111, 112 and 113 of gestation): one group gave birth spontaneously (ALT) and the other group received altrenogest until day 113 and cloprostenol on day 114 (ALTCLOPR). There were no differences (p > 0.05) in farrowing duration, BW, coefficient of variation (CV) of BW, stillborn piglets, mummified foetuses, percentage of light piglets and survival until Day 3 between sows with and without cloprostenol treatment, in both control (CONT ≥114 vs CONTCLOPR) and altrenogest-treated sows (ALT vs ALTCLOPR). Further comparisons were performed taking into account three groups: sows with early delivery (CONT <114 - farrowing before 114 days of gestation; n = 56), sows with longer gestation (CONT ≥114 - with and without cloprostenol treatment sows; n = 103) and ALT sows (with and without cloprostenol treatment; n = 105). Gestation length of CONT ≥114 and ALT sows was similar (p > 0.05), but higher than in CONT <114 sows. There were no differences (p > 0.05) between groups in farrowing duration, CV of BW, and percentages of stillborn piglets and mummified foetuses. Sows of CONT <114 group had a larger litter size and a lower BW than sows of the other two groups (p < 0.05). Sows of CONT <114 group had a higher percentage of lighter piglets and a lower piglet survival rate (p < 0.05) than ALT sows. In conclusion, altrenogest treatment proved to be an efficient method to avoid early parturition in 3-5 parity sows resulting in heavier piglets at birth. Topics: Animals; Birth Weight; Cloprostenol; Female; Labor, Induced; Luteolytic Agents; Pregnancy; Pregnancy Outcome; Premature Birth; Progestins; Swine; Trenbolone Acetate | 2013 |
Control of the estrous cycle in guinea-pig (Cavia porcellus).
The aim of this work was to look for a simple method to obtain synchronized ovulation in guinea pigs under farming conditions while respecting animal welfare. The luteolytic activity of three different prostaglandins F2alpha (PGF2α) analogs (D-cloprostenol, D,L-cloprostenol and luprostiol) and a daily treatment with oral progestagen (altrenogest) was tested successively at different stages of the estrous cycle on the same group of females during a period of 8 mo. The estrous cycle length was not modified by the administration of PGF2α analogs, whatever the stage of the estrous cycle when the treatment was initiated. Our results led us to reject the use of PGF2α analog to induce practical synchronization of the estrus in this species. In females (n = 29), given 15 days with altrenogest (0.1 mL po once a day), ovulation occurred 4.43 ± 0.13 days after the end of the treatment. Altrenogest treatment was followed by mating. No negative impacts of the treatment on the pregnancy rates, delivery rates and litter sizes were observed. This standard method of guinea-pig estrus synchronization is less stressful for the animals compared to techniques using progesterone tubing. Topics: Animals; Breeding; Cloprostenol; Dose-Response Relationship, Drug; Drug Administration Schedule; Estrous Cycle; Estrus Synchronization; Female; Guinea Pigs; Luteolytic Agents; Ovulation; Pregnancy; Prostaglandins F, Synthetic; Time Factors; Trenbolone Acetate | 2012 |
Synchronization of ovulation in cyclic gilts with porcine luteinizing hormone (pLH) and its effects on reproductive function.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality. Topics: Animals; Blastocyst; Chorionic Gonadotropin; Cloprostenol; Estrus Synchronization; Female; Fertility Agents, Female; Luteinizing Hormone; Pregnancy; Reproduction; Swine; Trenbolone Acetate | 2008 |
1 other study(ies) available for cloprostenol and altrenogest
Article | Year |
---|---|
Deslorelin on Day 8 or 12 postovulation does not luteinize follicles during an artificially maintained diestrous phase in the mare.
Practical estrus synchronization schemes are needed for mares. The Ovsynch synchronization protocol for cattle involves the administration of gonadotropin-releasing hormone (GnRH) to induce ovulation or luteinization of dominant follicles during the luteal phase and prostaglandin 7 days later to cause regression of any luteal tissue and development of a preovulatory follicle. An Ovsynch-type synchronization program potentially could be developed for horses if luteinization or ovulation of diestrous follicles occurred in response to GnRH treatment. The objective of this study was to determine if administration of the GnRH agonist, deslorelin acetate, on Day 8 or 12 postovulation would induce luteinization or ovulation of diestrous follicles in the mare. The model used was cycling mares maintained in an artificial luteal phase by administration of a synthetic progestin following prostaglandin-induced luteal regression. On the day of ovulation, 21 light horse mares were randomly assigned to one of three groups: (1) no GnRH, altrenogest from Days 5 to 15 postovulation with prostaglandin on Day 15; (2) GnRH on Day 8, altrenogest from Days 5 to 15 with prostaglandin given on Day 6 to induce luteolysis of the primary corpus luteum, an implant containing 2.1mg of deslorelin acetate inserted on Day 8 and removed on Day 10, with a second prostaglandin treatment on Day 15; (3) GnRH on Day 12, altrenogest from Days 9 to 19, prostaglandin on Day 10, a deslorelin acetate implant injected on Day 12 (subsequently removed on Day 14), and a second dose of prostaglandin administered on Day 19. Follicular development was monitored every other day from Day 5 until a 30-mm sized follicle was observed, and then daily to detection of ovulation. Serum progesterone concentrations were determined daily for 12 consecutive days. Progesterone concentrations in Group 1 remained elevated until approximately Day 12 postovulation. Prostaglandin administration on Day 15 resulted in complete luteolysis in all seven mares. In Group 2, progesterone concentrations in six of seven mares declined to baseline after prostaglandin treatment. No increase in serum progesterone was noted in any of the six mares that were given GnRH on Day 8, including three mares that had diestrous follicles > or =30mm in diameter at the time of treatment. Similarly, progesterone concentrations in six of seven mares in Group 3 declined to baseline after prostaglandin and there was no increase in progesterone after adm Topics: Animals; Cloprostenol; Diestrus; Drug Implants; Estrus Synchronization; Female; Gonadotropin-Releasing Hormone; Horses; Luteinization; Luteolysis; Ovarian Follicle; Ovulation; Progesterone; Trenbolone Acetate; Triptorelin Pamoate | 2004 |