clomipramine has been researched along with tetracycline in 15 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (33.33) | 29.6817 |
2010's | 10 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Glen, RC; Lowe, R; Mitchell, JB | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Antony, AS; Dhanabal, P; Jubie, S; Kalirajan, R; Muruganantham, N; Ramesh, PN | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Amaral, L; Farkas, S; Gunics, G; Molnár, J; Motohashi, N | 1 |
Dong, QX; Gao, JM; He, JH; Huang, CJ; Li, CQ; Xu, YQ; Xuan, YX; Yu, HP; Zhu, JJ | 1 |
1 review(s) available for clomipramine and tetracycline
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
14 other study(ies) available for clomipramine and tetracycline
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
Predicting phospholipidosis using machine learning.
Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues.
Topics: Animals; Anti-Infective Agents; Antidepressive Agents; Bacteria; Behavior, Animal; Chemistry Techniques, Synthetic; Dopamine; Fungi; Male; Mice; Stearic Acids; Swimming | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
Interaction between antibiotics and non-conventional antibiotics on bacteria.
Topics: Ampicillin; Anti-Bacterial Agents; Anti-Infective Agents, Urinary; Antipruritics; Bacteria; Calcium Channel Blockers; Clomipramine; Drug Combinations; Drug Interactions; Drug Resistance, Microbial; Erythromycin; Escherichia coli; Gentamicins; Humans; Methylene Blue; Promethazine; Pseudomonas aeruginosa; Selective Serotonin Reuptake Inhibitors; Staphylococcus epidermidis; Tetracycline; Verapamil | 2000 |
Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish.
Topics: Abnormalities, Drug-Induced; Animals; Aspirin; Cardiotoxins; Clomipramine; Cyclophosphamide; Disease Models, Animal; Edema; Gentamicins; Heart Diseases; Heart Rate; Heart Ventricles; Larva; Microinjections; Nimodipine; Pericardium; Quinidine; Terfenadine; Tetracycline; Toxicity Tests; Verapamil; Yolk Sac; Zebrafish | 2014 |