clomipramine has been researched along with indomethacin in 22 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 5 (22.73) | 18.7374 |
1990's | 1 (4.55) | 18.2507 |
2000's | 5 (22.73) | 29.6817 |
2010's | 10 (45.45) | 24.3611 |
2020's | 1 (4.55) | 2.80 |
Authors | Studies |
---|---|
Creveling, CR; Daly, JW; Lewandowski, GA; McNeal, ET | 1 |
Topliss, JG; Yoshida, F | 1 |
Johans, C; Kinnunen, PK; Söderlund, T; Suomalainen, P | 1 |
Chang, TK; Ensom, MH; Kiang, TK | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chang, G; Di, L; Huang, Y; Lin, Z; Liston, TE; Scott, DO; Troutman, MD; Umland, JP | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Artursson, P; Mateus, A; Matsson, P | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Horrobin, DF; Manku, MS; Mtabaji, JP | 2 |
Horrobin, DF; Manku, MS | 1 |
Hwang, EC; Van Woert, MH | 1 |
Barradas, MA; Jagroop, IA; Mikhailidis, DP | 1 |
2 review(s) available for clomipramine and indomethacin
Article | Year |
---|---|
UDP-glucuronosyltransferases and clinical drug-drug interactions.
Topics: Clinical Trials as Topic; Drug Interactions; Enzyme Activation; Enzyme Induction; Glucuronides; Glucuronosyltransferase; Humans; Pharmaceutical Preparations; Pharmacogenetics; Polymorphism, Genetic | 2005 |
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
20 other study(ies) available for clomipramine and indomethacin
Article | Year |
---|---|
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
Topics: Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Anesthetics, Local; Animals; Batrachotoxins; Calcium Channel Blockers; Cyclic AMP; Guinea Pigs; Histamine H1 Antagonists; In Vitro Techniques; Ion Channels; Neurotoxins; Sodium; Tranquilizing Agents; Tritium | 1985 |
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability.
Topics: Blood-Brain Barrier; Lipid Bilayers; Micelles; Permeability; Pharmaceutical Preparations; Structure-Activity Relationship; Surface Properties | 2004 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Species independence in brain tissue binding using brain homogenates.
Topics: Animals; Brain; Dogs; Guinea Pigs; Humans; Macaca fascicularis; Mice; Rats; Species Specificity | 2011 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
A high-throughput cell-based method to predict the unbound drug fraction in the brain.
Topics: Animals; Brain; Dialysis; HEK293 Cells; High-Throughput Screening Assays; Humans; Pharmaceutical Preparations; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization | 2014 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
A new mechanism of tricyclic antidepressant action. Blockade of prostaglandin-dependent calcium movements.
Topics: Angiotensin II; Animals; Calcium; Clomipramine; Dibenzazepines; Indomethacin; Muscle, Smooth; Norepinephrine; Potassium; Prostaglandins E; Rats; Vasopressins | 1977 |
Actions of the tricyclic antidepressant clomipramine on responses to pressor agents. Interactions with prostaglandin E2.
Topics: Angiotensin II; Animals; Arginine Vasopressin; Clomipramine; Dibenzazepines; Drug Synergism; Ileum; Indomethacin; Male; Muscle Contraction; Muscle, Smooth; Norepinephrine; Potassium; Pressoreceptors; Prostaglandins E; Rats | 1977 |
Chloroquine, quinine, procaine, quinidine and clomipramine are prostaglandin agonists and antagonists.
Topics: Animals; Blood Flow Velocity; Blood Pressure; Chloroquine; Clomipramine; Dibenzazepines; Indomethacin; Male; Mesenteric Arteries; Norepinephrine; Procaine; Prostaglandin Antagonists; Prostaglandins; Prostaglandins A; Prostaglandins E; Prostaglandins F; Quinidine; Quinine; Rats | 1976 |
Role of prostaglandins in the antimyoclonic action of clonazepam.
Topics: Animals; Benzodiazepinones; Clomipramine; Clonazepam; Indomethacin; Male; Mice; Myoclonus; Polyphloretin Phosphate; Prostaglandin Antagonists; Prostaglandins; Serotonin | 1981 |
Naftidrofuryl inhibits the release of 5-hydroxytryptamine and platelet-derived growth factor from human platelets.
Topics: Adenosine Diphosphate; Adult; Blood Platelets; Clomipramine; Collagen; Dose-Response Relationship, Drug; Female; Humans; In Vitro Techniques; Indomethacin; Male; Nafronyl; Platelet Aggregation; Platelet Aggregation Inhibitors; Platelet-Derived Growth Factor; Serotonin | 1994 |