clodinafop and quizalofop-ethyl

clodinafop has been researched along with quizalofop-ethyl* in 2 studies

Other Studies

2 other study(ies) available for clodinafop and quizalofop-ethyl

ArticleYear
Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil.
    Archives of environmental contamination and toxicology, 2010, Volume: 58, Issue:2

    The quizalafop-p-ethyl- and clodinafop-tolerant phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 isolated from the rhizospheric soils of mustard was used to determine its phosphate-solubilizing activity and other plant-growth-promoting traits both in the presence and absence of technical grade quizalafop-p-ethyl and clodinafop under in vitro conditions. Quizalafop-p-ethyl (at 40, 80, and 120 ppb) and clodinafop (at 400, 800, and 1200 ppb) reduced the P-solubilizing activity, synthesis of indole-3-acetic acid, and siderophores progressively with increasing concentrations of each herbicide. Hydrogen cyanide and ammonia synthesisized by this strain, however, did not change. Furthermore, the effects of three concentrations each of quizalafop-p-ethyl [40 (recommended dose), 80, and 120 ppb] and clodinafop [400 (recommended dose), 800, and 1200 ppb] were evaluated on plant-growth-promoting Pseudomonas aeruginosa strain PS1 inoculated greengram plants, grown in sandy clay loam soil. Generally, all of the concentrations of both quizalafop-p-ethyl and clodinafop showed phytotoxicity and severely affected the growth, symbiosis, grain yield, and nutrient uptake by greengram plants. The toxicity of quizalafop-p-ethyl and clodinafop enhanced gradually with the increase in the dose rate of herbicides. Quizalafop-p-ethyl was more toxic than clodinafop. In contrast, herbicide-tolerant P. aeruginosa strain PS1 when used with herbicides increased the measured parameters at all concentrations. Both quizalafop-p-ethyl at 120 ppb and clodinafop at 400 ppb increased total chlorophyll content, leghemoglobin, root N, shoot N, root P, shoot P, seed yield, and seed protein, relative to the uninoculated control. The study suggests that the phytotoxicity of herbicides to legumes could be reduced by applying the growth-promoting herbicide-tolerant strain of Pseudomonas aeruginosa PS1.

    Topics: Herbicides; Phosphates; Plant Development; Plant Growth Regulators; Plants; Propionates; Pseudomonas aeruginosa; Pyridines; Quinoxalines; Soil; Soil Microbiology; Soil Pollutants; Solubility; Symbiosis

2010
Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis.
    Bulletin of environmental contamination and toxicology, 2009, Volume: 82, Issue:6

    In modern conventional agriculture, herbicides are frequently used to prevent yield losses due to weeds. Herbicides also affect negatively the productivity of legumes. With these considerations, we evaluated the effects of soil applications of different concentrations of quizalafop-p-ethyl and clodinafop on the performance of Rhizobium inoculated pea, grown in clay pots. In this study, the concentration of herbicides higher than the recommended rates of quizalafop-p-ethyl and clodinafop adversely affected the dry matter accumulation, symbiotic properties, grain yield and nutrient status of pea plants. Toxicity of quizalafop-p-ethyl and clodinafop to pea plants increased progressively with increase in rates of herbicides. Of the two herbicides, quizalafop-p-ethyl was more toxic than clodinafop. In contrast, when herbicide tolerant Rhizobium strain MRP1 was also used with herbicide, it increased the measured parameters at all concentrations. A maximum increase of 11%, 17%, 46%, 33%, 21% and 7% in the root N, shoot N, root P, shoot P, seed yield and seed protein, respectively, was observed when MRP1 was used with 120 microg quizalafop-p-ethyl kg(-1) soil while with 1,200 microg clodinafop kg(-1) soil it increased the root N, shoot N, root P, shoot P, seed yield and seed protein by 20%, 9%, 56%, 56%, 29% and 7%, respectively, compared with the un-inoculated but herbicide treated control. This study suggested that the toxic effects of herbicides on pea plants could be attenuated by applying growth promoting herbicide tolerant strain of Rhizobium under herbicide stressed soil environment.

    Topics: Herbicide Resistance; Herbicides; Pisum sativum; Plant Roots; Plant Shoots; Propionates; Pyridines; Quinoxalines; Rhizobium; Soil; Symbiosis

2009