clioquinol has been researched along with enoxacin in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (25.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (75.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Dong, SN; Gong, Q; Li, J; Li, XK; Liu, WW; Mao, F; Tang, Y; Wang, H; Wang, TD; Xu, YX; Zhang, HY; Zhu, J | 1 |
de la Cabada, FJ; DuPont, HL; Gyr, K; Mathewson, JJ | 1 |
1 trial(s) available for clioquinol and enoxacin
Article | Year |
---|---|
Antimicrobial therapy of bacterial diarrhea in adult residents of Mexico--lack of an effect.
Topics: Adult; Bacterial Infections; Clioquinol; Diarrhea; Double-Blind Method; Enoxacin; Female; Humans; Male; Mexico; Trimethoprim, Sulfamethoxazole Drug Combination | 1992 |
3 other study(ies) available for clioquinol and enoxacin
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Butyrylcholinesterase; Cholinesterase Inhibitors; Cognitive Dysfunction; Dose-Response Relationship, Drug; Drug Discovery; Humans; Imidazoles; Mice; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Pargyline; Propylamines; Pyrimidines; Rats; Scopolamine; Structure-Activity Relationship; Thiourea | 2018 |