clay has been researched along with saponite* in 14 studies
14 other study(ies) available for clay and saponite
Article | Year |
---|---|
Efficient photocatalytic degradation of emerging ciprofloxacin under visible light irradiation using BiOBr/carbon quantum dot/saponite composite.
The use of visible-driven photocatalysts has fascinated attention as a capable and sustainable approach for wastewater remediation. In this work, BiOBr/carbon quantum dot (CQDs)/saponite composites (CQDs/Clay@BiOBr) were fabricated via hydrothermally using two different CQDs/Clay precursors (in-situ synthesis (IS) and physical mixing (PM)). The obtained products were characterized, and the photocatalytic performances of the prepared samples were evaluated in the photocatalytic decomposition of emerging ciprofloxacin (CIP) pharmaceutical waste. The highest CIP mineralization performance was achieved when a combination of BiOBr and CQDs/Clay (IS) with the appropriate proportion because the strong adhesion between CQDs and clay generate a great heterojunction in the composite. The stronger interaction of CQDs and better distribution of CQDs on the surface of clay in the CQDs/Clay (IS) enhanced the interaction of BiOBr and CQDs, and avoided the re-agglomeration of excess of CQDs on surface of BiOBr which reduce the active surface to receive the light and react with CIP. The ultrafast degradation rate of the optimized CQDs/Clay@BiOBr composite was better compared to others. The significant improvement in the CIP degradation efficiency of the CQDs/Clay@BiOBr composite was attributed to the excellent separation and transportation of photogenerated electrons and holes, as confirmed by photoluminescence, photocurrent density, and electrochemical impedance spectroscopy results. Moreover, the photocatalytic degradation mechanism of CIP in the CQDs/Clay@BiOBr composite was proposed based on the electronic states of each material in the composite and on a scavenger test. Thus, the proposed CQDs/Clay@BiOBr composite can be employed as a potential visible-light-driven photocatalyst for the decomposition of organic contaminants in wastewater. Topics: Aluminum Silicates; Bismuth; Carbon; Catalysis; Ciprofloxacin; Clay; Light; Quantum Dots; Wastewater | 2022 |
Antibacterial clay against gram-negative antibiotic resistant bacteria.
Antibiotic resistant bacteria persist throughout the world because they have evolved the ability to express various defense mechanisms to cope with antibiotics and the immune system; thus, low-cost strategies for the treatment of these bacteria are needed, such as the usage of environmental minerals. This paper reports the antimicrobial properties of a clay collected from Brunnenberg, Germany, that is composed of ferroan saponite with admixtures of quartz, feldspar and calcite as well as exposed or hidden (layered at inner regions) nano Fe(0). Based on the growth curves (log phase) of six antibiotic resistant bacteria (4 gram-negative and 2 gram-positive), we concluded that the clay acted as a bacteriostat; however, the clay was only active against the gram-negative bacteria (except for resilient Klebsiella pneumonia). The bacteriostatic mode of action was evidenced by the initial lack of Colony Forming Units on agar plates with growth registered afterward, certainly after 24h, and can be explained because interactions between membrane lipopolysaccharides and the siloxane surfaces of the clay. Labile or bioavailable Fe in the clay (extracted by EDTA or DFO-B) induced the quantitative production of HO as well as oxidative stress, which, nevertheless, did not account for by its bacteriostatic activity. Topics: Aluminum Silicates; Anti-Bacterial Agents; Clay; Germany; Gram-Negative Bacteria; Gram-Positive Bacteria; Potassium Compounds | 2018 |
Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere.
Abiotic hydrocarbons and carboxylic acids are known to be formed on Earth, notably during the hydrothermal alteration of mantle rocks. Although the abiotic formation of amino acids has been predicted both from experimental studies and thermodynamic calculations, its occurrence has not been demonstrated in terrestrial settings. Here, using a multimodal approach that combines high-resolution imaging techniques, we obtain evidence for the occurrence of aromatic amino acids formed abiotically and subsequently preserved at depth beneath the Atlantis Massif (Mid-Atlantic Ridge). These aromatic amino acids may have been formed through Friedel-Crafts reactions catalysed by an iron-rich saponite clay during a late alteration stage of the massif serpentinites. Demonstrating the potential of fluid-rock interactions in the oceanic lithosphere to generate amino acids abiotically gives credence to the hydrothermal theory for the origin of life, and may shed light on ancient metabolisms and the functioning of the present-day deep biosphere. Topics: Aluminum Silicates; Atlantic Ocean; Clay; Evolution, Chemical; Fluorescence; Iron; Models, Chemical; Origin of Life; Tryptophan | 2018 |
Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.
Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Topics: Acids; Aluminum Silicates; Bacteria; Bentonite; Biodegradation, Environmental; Clay; Kaolin; Magnesium Compounds; Petroleum; Polycyclic Aromatic Hydrocarbons; Silicon Compounds; Surface Properties | 2017 |
Adsorption and photophysical properties of fluorescent dyes over montmorillonite and saponite modified by surfactant.
In the present study, the adsorption capacities of two intercalated smectites, CTAB-saponite and CTAB-montmorillonite with a cationic surfactant, were investigated with three fluorescent dyes namely Rhodamine 640 perchlorate rhodamine (Rho), sulforhodamine B (SR) and Kiton red 620 (KR). The adsorption isotherms fit well with the non-linear Langmuir isotherm model and the maximum adsorption capacities of all the composites are determined. The photophysical properties such as anisotropy and fluorescence lifetime of all the fluorescent dyes over the clay materials are determined. The set of experimental data based on X-Ray diffraction (XRD), transmission electron microscopy (TEM), Thermal analysis (TG-DTA) and fluorescence measurements allow highlighting the presence or the absence of interactions between the dyes and the modified clay minerals. Topics: Adsorption; Aluminum Silicates; Bentonite; Clay; Fluorescent Dyes; Microscopy, Electron, Transmission; Rhodamines; Silicates; Surface-Active Agents; X-Ray Diffraction | 2017 |
Organoclays in water cause expansion that facilitates caffeine adsorption.
This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium-smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium-montmorillonite system but showed no effect on benzylammonium-saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media. Topics: Adsorption; Aluminum Silicates; Bentonite; Caffeine; Clay; Models, Molecular; Silicates; Water | 2015 |
Biodegradation of crude oil saturated fraction supported on clays.
The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation. Topics: Aluminum Silicates; Bentonite; Biodegradation, Environmental; Chromatography, Gas; Clay; Hydrochloric Acid; Hydrogen-Ion Concentration; Kaolin; Magnesium Compounds; Petroleum; Quaternary Ammonium Compounds; Silicon Compounds; Surface Properties | 2014 |
Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.
A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder. Topics: Aluminum Silicates; Catalysis; Chemical Warfare Agents; Clay; Molecular Structure; Niobium; Oxidation-Reduction | 2014 |
Interaction of biological molecules with clay minerals: a combined spectroscopic and sorption study of lysozyme on saponite.
The interaction of hen egg white lysozyme (HEWL) with Na- and Cs-exchanged saponite was investigated using sorption, structural, and spectroscopic methods as a model system to study clay-protein interactions. HEWL sorption to Na- and Cs-saponite was determined using the bicinchoninic acid (BCA) assay, thermogravimetric analysis, and C and N analysis. For Na-saponite, the TGA and elemental analysis-derived sorption maximum was 600 mg/g corresponding to a surface coverage of 0.85 ng/mm(2) with HEWL occupying 526 m(2)/g based on a cross-sectional area of 13.5 nm(2)/molecule. HEWL sorption on Na-saponite was accompanied by the release of 9.5 Na(+) ions for every molecule of HEWL sorbed consistent with an ion exchange mechanism between the positively charged HEWL (IEP 11) and the negatively charged saponite surface. The d-spacing of the HEWL-Na-saponite complex increased to a value of 4.4 nm consistent with the crystallographic dimensions of HEWL of 3 × 3 × 4.5 nm. In the case of Cs-saponite, there was no evidence of interlayer sorption; however, sorption of HEWL to the "external" surface of Cs-saponite showed a high affinity isotherm. FTIR and Raman analysis of the amide I region of the HEWL-saponite films prepared from water and D(2)O showed little perturbation to the secondary structure of the protein. The overall hydrophilic nature of the HEWL-Na-saponite complex was determined by water vapor sorption measurements. The clay retained its hydrophilic character with a water content of 18% at high humidity corresponding to 240 H(2)O molecules per molecule of HEWL. Topics: Aluminum Silicates; Clay; Minerals; Muramidase; Thermogravimetry | 2012 |
Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the "size-matching rule".
Saponite-type clays that have different cation exchange capacities were successfully synthesized by hydrothermal synthesis. The structure and properties were analyzed by X-ray diffraction, X-ray fluorescence, (27)Al NMR, FT-IR, thermogravimetric and differential thermal analysis, atomic force microscopy, and cation exchange capacity measurement. The intercharge distances on the synthetic saponite (SS) surfaces were calculated to be 0.8-1.9 nm on the basis of a hexagonal array. The complex formation behavior between SS and cationic porphyrins was examined. It turns out that the average intermolecular distance between porphyrin molecules on the SS surface can be controlled, depending on the charge density of the SS. In the case of tetrakis(1-methylpyridinium-4-yl)porphyrin (H(2)TMPyP(4+)), the average intermolecular distances on the SS surface can be controlled from 2.3 to 3.0 nm on the basis of a hexagonal array. It was also found that absorption maxima of porphyrins depend on the charge density of the SS. The adsorption behavior of porphyrin on the SS surface can be rationally understood by the previously reported "size-matching rule". This methodology using host-guest interaction can realize a unique adsorption structure control of the porphyrin molecule on the SS surface, where the gap distance between guest porphyrin molecules is rather large. These findings will be highly valuable to construct photochemical reaction systems such as energy transfer in the complexes. Topics: Adsorption; Aluminum Silicates; Cations; Clay; Molecular Structure; Particle Size; Porphyrins; Surface Properties | 2011 |
Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Topics: Adsorption; Agriculture; Aluminum Silicates; Animals; Clay; Environmental Monitoring; Environmental Restoration and Remediation; Female; Immunity, Humoral; Intercalating Agents; Mice; Polychlorinated Dibenzodioxins; Risk Assessment; Silicates; Soil; Soil Pollutants | 2011 |
Direct electron transfer and enhanced electrocatalytic activity of hemoglobin at iron-rich clay modified electrodes.
The possible role of structural iron in clays to promote direct electron transfer of hemoglobin (Hb) was investigated. Clays containing different amounts of iron situated in octahedral or tetrahedral sites have been used to modify glassy carbon electrodes: nontronite, synthetic montmorillonite, and saponite. A synthetic montmorillonite containing non-iron impurities was used as a reference. Interactions between Hb and these clays were studied with the establishment of adsorption isotherms and by the analysis of X-ray diffraction patterns, FTIR, and UV-vis spectra of the Hb-clay samples. The electrochemical behavior of clay modified electrodes (CME) was characterized by cyclic voltammetry in the presence of Hb in solution or adsorbed within the clays. Nontronite, which contains the highest amount of structural iron, enhanced significantly direct electron transfer of Hb. Finally, the electrocatalytic behavior of Hb-Nontronite CME in the presence of hydrogen peroxide was also studied, and the H(2)O(2) calibration curve was recorded under amperometric conditions for different bioelectrode configurations. Topics: Aluminum Silicates; Animals; Bentonite; Carbon; Catalysis; Cattle; Clay; Electrochemistry; Electrodes; Electron Transport; Electrons; Hemoglobins; Iron; Spectrophotometry, Ultraviolet; Surface Properties; X-Ray Diffraction | 2009 |
Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation.
Assemblages of clay minerals are routinely used as proxies for paleoclimatic change and paleoenvironmental conditions in Phanerozoic rocks. However, this tool is rarely applied in older sedimentary units. In this paper, the clay mineralogy of the Doushantuo Formation in South China is documented, providing constraints on depositional conditions of the Ediacaran Yangtze platform that host the earliest animal fossils in the geological record. In multiple sections from the Yangtze Gorges area, trioctahedral smectite (saponite) and its diagenetic products (mixed-layer chlorite/smectite, corrensite, and chlorite) are the dominant clays through the lower 80 m of the formation and constitute up to 30 wt% of the bulk rock. Saponite is interpreted as an in situ early diagenetic phase that formed in alkaline conditions (pH > or = 9). The absence of saponite in stratigraphically equivalent basin sections, 200-400 km to the south, indicates that alkaline conditions were localized in a nonmarine basin near the Yangtze Gorges region. This interpretation is consistent with crustal abundances of redox-sensitive trace elements in saponitic mudstones deposited under anoxic conditions, as well as a 10 per thousand difference in the carbon isotope record between Yangtze Gorges and basin sections. Our findings suggest that nonmarine environments may have been hospitable for the fauna preserved in the Yangtze Gorges, which includes the oldest examples of animal embryo fossils and acanthomorphic acritarchs. Topics: Aluminum Silicates; Animals; China; Clay; Environment; Fossils; Geologic Sediments; History, Ancient; Minerals; Oxidation-Reduction; Paleontology; Trace Elements; X-Ray Diffraction | 2009 |
Triazine adsorption by saponite and beidellite clay minerals.
We investigated the sorption of three triazine herbicides (atrazine, simazine, and metribuzin) by saponite and beidellite clay minerals saturated with K+, Cs+, Na+, and Ca2+. Saponite clay sorbed a larger fraction of each pesticide from aqueous solution than did beidellite clay. The lower cation-exchange capacity in saponite compared to that in beidellite presumably results in a less crowded interlayer, with more siloxane surface being available for adsorption. Generally, Cs-saturated clays sorbed more triazines than did clays saturated by K+, Na+, or Ca2+. We attribute this to the smaller hydrated radius of Cs+, which again increases the siloxane surface that is available for sorption. Furthermore, the relatively weak hydration of Cs+ reduces the swelling of clay interlayers, thus making sorption domains less hydrated and more receptive to hydrophobic molecules. The Cs-saponite manifested a sorption of more than 1% atrazine by weight above equilibrium concentrations of 6 mg/L, which to our knowledge is the largest sorption of neutral atrazine from water yet reported for an inorganic sorbent. Molecular dynamics simulations indicate that atrazine interacts both with clay basal planes and with multiple cations in the clay interlayer. Topics: Adsorption; Aluminum Silicates; Atrazine; Clay; Environmental Pollution; Herbicides; Simazine; Triazines; Water | 2006 |