clay has been researched along with phthalic-acid* in 2 studies
2 other study(ies) available for clay and phthalic-acid
Article | Year |
---|---|
Competitive adsorption and transport of phthalate esters in the clay layer of JiangHan plain, China.
This study aimed to investigate the adsorption behavior of phthalate esters (PAEs) in the clay layer of JiangHan Plain, China, so as to make better understanding about the source and control of PAEs in groundwater. Adsorption kinetics, isotherms, and miscible displacement experiments were conducted, and different models were used to simulate the experiment data. Results showed that the adsorption kinetics followed pseudo-second-order model. The kinetic parameters showed quantitative relationships with straight and branched chain carbon numbers of PAEs. These relationships were simulated and carefully discussed. The adsorption isotherms followed linear model better. And partition coefficient (Kd) increased with the carbon chain length of PAEs. Miscible displacement experiments showed that DEHP could not flow out of the column in 100d. HYDRUS-1D and two-site sorption model (linear, first order nonequilibrium adsorption) were used for the simulation of the breakthrough and transport curves of DMP, DEP, DBP, and DiBP. Results showed that the dispersion coefficients (D) and partition coefficient (Kd(')) increased with the carbon chain length. About 10% DBP and DiBP and 1% DMP and DEP were absorbed on the type-1 sites. DMP and DEP were much easier to transfer into the type-2 sites than DBP and DiBP. DBP and DiBP might aggregate in micro-pores of the sorbent. Retardation coefficient and Damkohler number were also calculated and discussed. It was proved that clay layer is an important retarder for PAEs downward transport. However, it can be passed through if the time is sufficient. Topics: Adsorption; Aluminum Silicates; China; Clay; Environmental Pollutants; Esters; Kinetics; Motion; Phthalic Acids; Software | 2013 |
Test of Cairns-Smith's 'crystals-as-genes' hypothesis.
One aspect of the multifaceted proposal by A. G. Cairns-Smith, that imperfect crystals have the capacity to act as primitive genes by transferring the disposition of their imperfections from one crystal to another, is investigated. Rather than examining clay minerals, the most likely crystalline genes in the theories of Cairns-Smith, an experiment was designed in a model crystalline system unrelated to the composition of the prebiotic earth but suited to a well-defined test. Plates of potassium hydrogen phthalate riddled with dislocations were studied in order to ascertain whether, according to Cairns-Smith, parallel screw dislocations could serve as an information store with cores akin to punches in an old computer card. Evidence of screw dislocations was obtained from their associated growth hillocks through differential interference contrast microscopy, atomic force microscopy, and luminescence labeling of hillocks in conjunction with confocal laser scanning microscopy. The dispositions of growth active hillocks were quantified by fractal analysis. 'Mother' crystals were cleaved and inheritance was evaluated by the corresponding patterns of luminescence developed in their 'daughters' after continued growth in the presence of fluorophores. Luminescence microscopy proves to be a versatile tool for studying the dynamics of growth active hillocks. In the aggregate, this work speaks to the need for molecular mechanisms of dislocation nucleation. Topics: Aluminum Silicates; Chemistry Techniques, Analytical; Clay; Crystallization; Phthalic Acids | 2007 |