clay and cyclohexanone

clay has been researched along with cyclohexanone* in 2 studies

Other Studies

2 other study(ies) available for clay and cyclohexanone

ArticleYear
Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor.
    Journal of hazardous materials, 2011, Nov-30, Volume: 196

    As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400°C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD(Cr) and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m(-3) and 936.3 kg m(-3), 1245.0 kg m(-3) and 1420.0 kg m(-3), respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6h and the media height of 60 cm were applied, about 90% of COD(cr) and cyclohexanone were removed.

    Topics: Aluminum Silicates; Biological Oxygen Demand Analysis; Ceramics; Clay; Corrosion; Cyclohexanones; Electrodes; Electrolysis; Industrial Waste; Iron; Microscopy, Electron, Scanning; Sewage; Surface Properties; Water Pollutants, Chemical; Water Purification

2011
Pd-Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase.
    Journal of hazardous materials, 2009, Dec-15, Volume: 172, Issue:1

    Catalysts based on pillared clays with Pd-Al were synthesized from a commercial bentonite and tested for catalytic hydrodechlorination (HDC) using 4-chlorophenol (4-CPhOH) as target compound and formic acid as hydrogen source. Stable Pd-Al pillared clays, with a strong fixation of the active phase to the solid support were obtained since no Pd was detected in the reaction media. The incorporation of Pd to the pillared clay structure yielded catalysts with high activity in the reaction studied reaching a complete removal of the 4-CPhOH under mild conditions of temperature (50-70 degrees C). Phenol was not the only reaction product formed, since a more hydrogenated product such as cyclohexanone was detected in the effluent, which indicates additional hydrogenation of phenol. The influence of the method of introduction of Pd in the pillared clay (ion-exchange or impregnation) and Pd concentration in the catalytic activity were studied as well as other important operating variables such as reaction temperature, catalyst concentration, 4-CPhOH initial concentration and formic acid to 4-CPhOH molar ratio. The catalysts prepared suffered deactivation after three consecutive runs, probably due to carboneous deposits formation since no appreciable Pd leaching was observed.

    Topics: Aluminum; Aluminum Silicates; Catalysis; Chlorine; Chlorophenols; Clay; Cyclohexanones; Microscopy, Electron, Scanning; Palladium; Phenol; Temperature; Time Factors; Waste Disposal, Fluid; Water Pollutants, Chemical; Water Purification; X-Ray Diffraction

2009