clay has been researched along with clinoptilolite* in 5 studies
5 other study(ies) available for clay and clinoptilolite
Article | Year |
---|---|
Water-Holding Properties of Clinoptilolite/Sodium Polyacrylate-Modified Compacted Clay Cover of Tailing Pond.
Clinoptilolite and sodium polyacrylate (Na-PAA) were used as water-retaining agents to improve the water-holding capacity of compacted clay cover (CCC). The optimum moisture content and Atterberg limits of the CCC modified by clinoptilolite and Na-PAA were studied. The soil-water characteristic curve (SWCC) of the CCC modified by clinoptilolite and Na-PAA was studied. The mesostructure of the CCC was analyzed by polarized light microscopy. The test results show that: (1) the optimum moisture content and liquid limit of the CCC modified by clinoptilolite and Na-PAA increased, while the maximum dry density decreased; (2) the SWCC of the CCC modified by clinoptilolite and Na-PAA shifts to the upper right, and the volume moisture content of modified CCC is higher than that of unmodified CCC under the same matrix suction; (3) compared with the unmodified CCC, the air-entry value (AEV) of the clinoptilolite-modified CCC increased by 65.18% at most, and the AEV of the further modified CCC with Na-PAA in-creased by about two times; and (4) the flocculation structure and porosity of modified CCC decreased, and the porosity was distributed uniformly. Topics: Clay; Ions; Sodium; Soil; Water; Zeolites | 2022 |
Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells.
Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC) was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h), followed by the RAW 264.7 cell line (40%), and finally, macrophages derived from mice bone marrow monocytes (98%). Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6), in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro. Topics: Aluminum Silicates; Animals; Cell Differentiation; Clay; Gene Expression; Humans; Interleukin-10; Interleukin-6; Interleukin-8; Macrophages; Magnesium Silicates; Mice; Tumor Necrosis Factor-alpha; Zeolites | 2015 |
The spectroscopic study of building composites containing natural sorbents.
This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Topics: Adsorption; Aluminum Silicates; Cations; Clay; Compressive Strength; Metals, Heavy; Microscopy, Electron, Scanning; Minerals; Solutions; Spectroscopy, Fourier Transform Infrared; Zeolites | 2011 |
Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay.
The adsorption of barium by Ca-exchanged clinoptilolite and montmorillonite is presented. The kinetics of adsorption of Ba(2+) were evaluated contacting 1g portion of each adsorber with 100mL 0.1N BaCl(2) for 200 h. Adsorption by Ca-clinoptilolite is defined by second-order kinetics of rate constant K(v) 8.232 x 10(-2) g mg(-1)h(-1) and maximum removal of 71.885 mg g(-1). It is a two-stage process initiated by a rapid uptake of Ba(2+) followed by more moderate kinetics. The adsorption isotherms were determined contacting 0.2g of each adsorber with 10 mL 0.1-0.005N BaCl(2)+CaCl(2) solution, Ba(2+)/Ca(2+) ratio 1, for periods of 7 days for the tuff and 2 days for the clay. The equilibrium adsorption is described by the Langmuir model, of equilibrium constant K 0.0151 L mg(-1) and maximum adsorption of 15.29 mg g(-1). The adsorption of Ba(2+) by Ca-exchanged montmorillonite also follows a second-order reaction of rate constant K(v) 3.179 x 10(-2) g mg(-1)h(-1), and calculated separation of 36.74 mg g(-1); the Langmuir isotherm is defined by the constant K 0.034 L mg(-1) and maximum adsorption of 15.29 mg g(-1). X-ray diffraction shows that the exchange of Ba(2+) modifies the d(001) of Ca-montmorillonite from 15.4 to 12.4A. Topics: Adsorption; Aluminum Silicates; Barium; Bentonite; Calcium; Clay; Hot Temperature; Kinetics; Temperature; Time Factors; Waste Disposal, Fluid; Water Pollutants, Chemical; Water Purification; Zeolites | 2010 |
Evaluation of an organoclay, an organoclay-anthracite blend, clinoptilolite, and hydroxy-apatite as sorbents for heavy metal removal from water.
Topics: Adsorption; Aluminum Silicates; Biocompatible Materials; Clay; Coal; Durapatite; Metals, Heavy; Water Pollutants; Water Purification; Zeolites | 2004 |