clay has been researched along with chlorite* in 7 studies
7 other study(ies) available for clay and chlorite
Article | Year |
---|---|
Effect of Authigenic Chlorite on the Pore Structure of Tight Clastic Reservoir in Songliao Basin.
Authigenic chlorite is a common clay mineral in clastic rock reservoirs, and it has an important influence on the pore structure of tight clastic rock reservoirs. In this paper, the tight clastic reservoirs in the Lower Cretaceous Yingcheng Formation in the Longfengshan subsag in the Changling fault depression in the Songliao Basin were investigated. Polarized light microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-pressure mercury injection (HPMI), and low temperature nitrogen adsorption (LTNA) were used to study the influence of authigenic chlorite on the pore structure of tight clastic reservoirs. The results show that the authigenic chlorite in the study area was mainly generated in the form of pore linings. The formation of the authigenic chlorite was mainly controlled by the parent rock type and the sedimentary microfacies in the provenance area. The hydrolysis and dissolution of the iron- and magnesium-rich intermediate-mafic magmatic rocks and the high-energy, open, weakly alkaline reducing environment in the delta-front underwater distributary channel were the key factors controlling the formation of the authigenic chlorite in the study area. The pore-lining chlorite slowed down compaction and inhibited quartz overgrowth, protecting the original pores. Moreover, there are a large number of intercrystalline pores in the chlorite, which provided channels for the flow of acidic water and thus the formation of secondary pores, playing a positive role in the physical properties of the tight clastic rock reservoirs. However, the pore-filling chlorite also blocked the pore throats, playing a negative role in the physical properties of the tight clastic rock reservoirs. The tight clastic rock reservoirs with pore-lining chlorite generally had low displacement pressures and large pore throat radii. The morphology of the nano-scale pores was mainly parallel plate-shaped slit pores. There were many primary pores and a small number of secondary pores in the reservoir. Some of the pores were connected by narrow-necked or curved sheet-like throats, and the pore structure was relatively good. A higher relative content of chlorite led to a larger nano-scale pore throat radius, a smaller specific surface area, a smoother pore surface, and stronger homogeneity. Authigenic chlorite played a positive role in the formation of the tight clastic reservoirs in the study area. Topics: Adsorption; Clay; Cold Temperature; Fatigue; Humans | 2023 |
Comparison of the heterogeneous reaction of NO
Mineral particles in air could provide atmospheric chemical reaction interface for gaseous substances and participate in atmospheric chemical reaction process, and affecting the status and levels of gaseous pollutants in air. However, differences of the heterogenous reaction on the surface minerals particles are not very clear. Considering main mineral composition of ambient particles was from dust emission, therefore, typical clay minerals (chlorite, illite) and desert particles (Taklimakan Desert) were selected to analysize chemical reaction of NO Topics: Aerosols; Clay; Dust; Environmental Pollutants; Gases; Minerals; Nitrates; Nitrogen Dioxide | 2023 |
Statistics in identifying factors that control the geochemical distribution of potentially polluting elements over a tailings pond surface: a case study.
The study shows how the statistical approach can provide information on the factors and processes that control the geochemical distribution of elements at the surface of an abandoned tailings pond. In this regard, the case study of a waste deposit resulting from the ore processing plant of Fundu Moldovei was carried out. The facility was concentrating Cu, Pb, and Zn from the polymetallic sulfide ores of the Fundu Moldovei-Leșu Ursului mining district (Romania). The statistics indicate three types of waste, showing specific properties: (i) Waste of the beach, rich in soluble fraction (14.4%) and secondary minerals (e.g., jarosite, ferricopiapite, magnesiocopiapite, pickeringite, and clay minerals). The latter and the related high contents of Al, K, Fe, Co, Ni, Cu, Pb, and Zn are controlled by the water evaporation and subsequent transient pH (2.6-3.5) of the leachates accumulated as puddles. The lower pH and scarce soluble fraction favor a rise in the Cu and Zn contents, while Al, K, Fe, and Co are noticeable at a higher pH when the soluble fraction is abundant. (ii) Waste of the upper dam slope, marked by intense oxidation and a meager occurrence of secondary minerals precipitated from highly acidic pore leachates (average pH of 2.55), namely, jarosite, ferricopiapite, magnesiocopiapite, and coquimbite. The surface waste contains more pyrite and is coarser because of the fine particle removal during rainfall. Unlike the beach waste, in the upper dam tailings, Al, K, Fe, Co, Cu, Pb, and Zn seem to relate mainly to the primary minerals (muscovite, chlorite, and pyrite). (iii) Downslope dam waste is less acidic (average pH of 3.75) than that of the upper slope; it contains secondary minerals stable at a higher pH (e.g., gypsum, apjohnite, dietrichite, clay minerals, and schwertmannite). Calcium, Mn, and Cd are more abundant in the dam waste. They originate from both primary and secondary minerals (e.g., muscovite, chlorite, gypsum, ferricopiapite, and magnesiocopiapite) and correlate with the coarser waste. Topics: Calcium Sulfate; Clay; Environmental Monitoring; Lead; Minerals; Ponds | 2023 |
Mineralogical and textural characteristics of nest building geomaterials used by three sympatric mud-nesting hirundine species.
Many hirundine species construct their nests by carrying mud particles from adjacent areas. This study aimed to investigate for the first time the materials that mud-nesting hirundines choose for nest construction from a mineralogical and sedimentological perspective. For this purpose, we sampled nests of three sympatric species, namely the Barn Swallow (Hirundo rustica), the Red-rumped Swallow (Cecropis daurica) and the House Martin (Delichon urbicum), from southeastern Europe. Our results showed that all species tend to use clay minerals as a cement and especially smectite and illite and if these minerals are not present in the adjacent area, they use halloysite, kaolinite or chlorite. The amounts of clay minerals in the nests are generally low indicating that the studied species can accurately identify the properties of the nesting materials. Most of the non clay minerals that they use are the common, easily accessible colourless or white minerals with low specific gravity values such as quartz, feldspars and calcite. Grain size distribution analysis revealed that the amount of clay sized grains in the mud nests of all three species is relatively low, while the amount of larger grain particles decreases when the size of the non clay minerals is small. The Red-rumped Swallow showed an increasing preference for larger grain size particles and quartz, the Barn Swallow for finer grain size particles and calcite, and the preferences of the House Martin are in between the other two species. The three hirundine species present different nest building strategies and depending on the nest architecture, each of them seems to show preference for specific minerals and specific grain sizes. Topics: Aluminum Silicates; Animals; Calcium Carbonate; Chlorides; Clay; Construction Materials; Kaolin; Nesting Behavior; Potassium Compounds; Quartz; Swallows | 2018 |
Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and X-ray powder diffraction study.
Sequential extraction procedures (SEPs) are commonly used to determine speciation of trace metals in soils and sediments. However, the non-selectivity of reagents for targeted phases has remained a lingering concern. Furthermore, potentially reactive phases such as phyllosilicate clay minerals often contain trace metals in structural sites, and their reactivity has not been quantified. Accordingly, the objective of this study is to analyze the behavior of trace metal-bearing clay minerals exposed to the revised BCR 3-step plus aqua regia SEP. Mineral quantification based on stoichiometric analysis and quantitative powder X-ray diffraction (XRD) documents progressive dissolution of chlorite (CCa-2 ripidolite) and two varieties of smectite (SapCa-2 saponite and SWa-1 nontronite) during steps 1-3 of the BCR procedure. In total, 8 (+/-1) % of ripidolite, 19 (+/-1) % of saponite, and 19 (+/-3) % of nontronite (% mineral mass) dissolved during extractions assumed by many researchers to release trace metals from exchange sites, carbonates, hydroxides, sulfides and organic matter. For all three reference clays, release of Ni into solution is correlated with clay dissolution. Hydrolysis of relatively weak Mg-O bonds (362 kJ/mol) during all stages, reduction of Fe(III) during hydroxylamine hydrochloride extraction and oxidation of Fe(II) during hydrogen peroxide extraction are the main reasons for clay mineral dissolution. These findings underscore the need for precise mineral quantification when using SEPs to understand the origin/partitioning of trace metals with solid phases. Topics: Aluminum Silicates; Chemistry Techniques, Analytical; Chlorides; Clay; Iron; Magnesium; Metals; Silicates; Solutions; Trace Elements; X-Ray Diffraction | 2008 |
The influence of continuous rice cultivation and different waterlogging periods on morphology, clay mineralogy, Eh, pH and K in paddy soils.
The effect of different rice cultivation periods on the properties of selected soils in alluvial plain were studied in Mazandaran province (north of Iran) in 2004. Soils were sampled form 0, 6, 16, 26 and over 40 years rice cultivation fields. In each treatment three soil profiles and six nearby auger holes were studied. The present study results indicated that continuous rice cultivation have changed soil moisture regime from xeric to aquic, soil color from brown to grayish, surface horizons from mollic to ochric epipedon and soil structure changed from granular or blocky to massive. Therefore, the soil order has changed from Mollisols to Inceptisols. No illuviation and eluviation of clay minerals occurred as a consequence of rice cultivation. X-ray diffraction analysis showed that clay minerals in non-rice cultivated field were illite, vermiculite, montmorillonite, kaolinite and chlorite, but in rice field were illite, montmorillonite, kaolinite and chlorite, respectively. In contrast of montmorillonite, the amount of illite and vermiculite have been decreased by increasing periods of rice cultivation. The pH values of the saturated soil surface in six weeks past plantation have shifted toward neutrality. While Eh value of non-paddy soils were about +90 mv, surface horizons of paddy soils at field conditions had Eh value about +40, -12, -84, -122 mv, respectively. The amounts of organic matter and available Fe, Mn, Zn and Cu were increased whereas available K was decreased in paddy soils. Topics: Agriculture; Aluminum Silicates; Bentonite; Chlorides; Clay; Hydrogen-Ion Concentration; Iran; Kaolin; Minerals; Oryza; Potassium; Soil; Time Factors; Water; X-Ray Diffraction | 2007 |
Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.
Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger. Topics: Adsorption; Aluminum Silicates; Biological Availability; Carbonates; Chlorides; Clay; Environmental Monitoring; Lead; Minerals; Organic Chemicals; Soil; Soil Pollutants; Trees | 2005 |