clay and brine

clay has been researched along with brine* in 7 studies

Other Studies

7 other study(ies) available for clay and brine

ArticleYear
Ferrocyanide enhanced evaporative flux to remediate soils contaminated with produced water brine.
    Journal of hazardous materials, 2023, 01-15, Volume: 442

    Accidental releases of highly saline produced water (PW) to land can impact soil quality. The release of associated salts can clog soil pores, disperse soil clays, and inhibit plants and other soil biota. This study explores a novel remediation technique using ferrocyanide to enhance the evaporative flux of soil porewater to transport dissolved salts to the soil surface, where crystallization then occurs. The addition of ferrocyanide modifies crystal growth that enhances salt transport, allowing salt efflorescence on the soil surface and physical removal. Release sites were simulated through beaker sand column experiments using two PWs collected from the Permian Basin. PW composition altered efflorescence, with up to ten times as much ferrocyanide required in PWs than comparable concentrations of pure NaCl solutions. The addition of EDTA reduced dissolved cation competition for the ferrocyanide ion, improving PW salt recovery at the soil surface. The speciation model, PHREEQC, was used to predict the onset of salt precipitation as a function of evaporative water loss and model the effect of aqueous ferrocyanide and EDTA speciation on efflorescence. The results highlight the utility of predictive modeling for optimizing additive dosages for a given release of PW.

    Topics: Clay; Edetic Acid; Ferrocyanides; Salts; Sand; Sodium Chloride; Soil; Soil Pollutants; Water

2023
Numerical solutions for the treatment brine by diffusive and migration flux using new brine-clay-seawater system.
    Journal of environmental management, 2023, Jul-15, Volume: 338

    With the growing world population and industrial production, the demand for water has been continuously increasing. By 2030, 60.0% of the world population will not have access to freshwater, which is ∼2.50% of the total global water. For this, a total of over 17,000 operational desalination plants have been constructed worldwide. However, the key barrier to desalination expansion is brine production, which is 50.0% higher than the freshwater, generating 5.0-33.0% of total desalination cost. In this paper, a new theoretical approach for brine treatments has been proposed. It consists in combining electrokinetic and electrochemical mechanisms by using an alkaline clay with high buffering power. Advanced numerical model has been carried out to estimate the ions concentrations in the brine-clay-seawater system. Analytical analyses have been also carried out to estimate the global system efficiency. Results show the feasibility of the theoretical system, its size, and usability of the clay. This model not only should clean the brine to produce new treated seawater but also it should recover useful minerals thank to the electrolysis and precipitations effects.

    Topics: Clay; Salinity; Seawater; Water; Water Purification

2023
Intra- and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land).
    Environmental microbiology, 2020, Volume: 22, Issue:8

    A perennially frozen lake at Boulder Clay site (Victoria Land, Antarctica), characterized by the presence of frost mounds, have been selected as an in situ model for ecological studies. Different samples of permafrost, glacier ice and brines have been studied as a unique habitat system. An additional sample of brines (collected in another frozen lake close to the previous one) was also considered. Alpha- and beta-diversity of fungal communities showed both intra- and inter-cores significant (p < 0.05) differences, which suggest the presence of interconnection among the habitats. Therefore, the layers of frost mound and the deep glacier could be interconnected while the brines could probably be considered as an open habitat system not interconnected with each other. Moreover, the absence of similarity between the lake ice and the underlying permafrost suggested that the lake is perennially frozen based. The predominance of positive significant (p < 0.05) co-occurrences among some fungal taxa allowed to postulate the existence of an ecological equilibrium in the habitats systems. The positive significant (p < 0.05) correlation between salt concentration, total organic carbon and pH, and some fungal taxa suggests that a few abiotic parameters could drive fungal diversity inside these ecological niches.

    Topics: Antarctic Regions; Clay; Ecosystem; Fungi; Ice Cover; Lakes; Mycobiome; Organic Chemicals; Permafrost; Salinity; Salts

2020
Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.
    Environmental science & technology, 2014, Volume: 48, Issue:3

    Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide.

    Topics: Aluminum Silicates; Carbon Dioxide; Clay; Kaolin; Minerals; Molecular Dynamics Simulation; Salts; Siloxanes; Surface Tension; Water

2014
Evaluation of CO₂ solubility-trapping and mineral-trapping in microbial-mediated CO₂-brine-sandstone interaction.
    Marine pollution bulletin, 2014, Aug-15, Volume: 85, Issue:1

    Evaluation of CO₂ solubility-trapping and mineral-trapping by microbial-mediated process was investigated by lab experiments in this study. The results verified that microbes could adapt and keep relatively high activity under extreme subsurface environment (pH<5, temperature>50 °C, salinity>1.0 mol/L). When microbes mediated in the CO₂-brine-sandstone interaction, the CO₂ solubility-trapping was enhanced. The more biomass of microbe added, the more amount of CO₂ dissolved and trapped into the water. Consequently, the corrosion of feldspars and clay minerals such as chlorite was improved in relative short-term CO₂-brine-sandstone interaction, providing a favorable condition for CO₂ mineral-trapping. Through SEM images and EDS analyses, secondary minerals such as transition-state calcite and crystal siderite were observed, further indicating that the microbes played a positive role in CO₂ mineral trapping. As such, bioaugmentation of indigenous microbes would be a promising technology to enhance the CO₂ capture and storage in such deep saline aquifer like Erdos, China.

    Topics: Aluminum Silicates; Calcium Carbonate; Carbon Dioxide; China; Clay; Clostridium; Groundwater; Hydrogen-Ion Concentration; Klebsiella; Minerals; Plesiomonas; Potassium Compounds; Salinity; Salts; Solubility; Temperature; Water Microbiology; Water Pollutants

2014
Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.
    Environmental science & technology, 2013, Jan-02, Volume: 47, Issue:1

    We combined a noninvasive tomographic imaging technique with an invasive open-system core-flooding experiment and compared the results of the pre- and postflooded states of an experimental sandstone core sample from an ongoing field trial for carbon dioxide geosequestration. For the experiment, a rock core sample of 80 mL volume was taken from the 629 m Stuttgart Formation storage domain of a saline sandstone aquifer at the CCS research pilot plant Ketzin, Germany. Supercritical carbon dioxide and synthetical brine were injected under in situ reservoir p/T-conditions at an average flow rate of 0.1 mL/min for 256 h. X-ray computed microtomographic imaging was carried out before and after the core-flooding experiment at a spatial voxel resolution of 27 μm. No significant changes in microstructure were found at the tomographic imaging resolution including porosity and pore size distribution, except of an increase of depositional heterogeneous distribution of clay minerals in the pores. The digitized rock data were used as direct real microstructure input to the GeoDict software package, to simulate Navier-Stokes flow by a lattice Boltzmann equation solver. This procedure yielded 3D pressure and flow velocity fields, and revealed that the migration of clay particles decreased the permeability tensor probably due to clogging of pore openings.

    Topics: Aluminum Silicates; Carbon Dioxide; Carbon Sequestration; Clay; Geological Phenomena; Groundwater; Permeability; Porosity; Salinity; Salts; X-Ray Microtomography

2013
Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.
    Environmental science & technology, 2010, Aug-01, Volume: 44, Issue:15

    To ensure efficiency and sustainability of geologic CO2 sequestration (GCS), a better understanding of the geochemical reactions at CO2-water-rock interfaces is needed. In this work, both fluid/solid chemistry analysis and interfacial topographic studies were conducted to investigate the dissolution/precipitation on phlogopite (KMg3Si3AlO10(F,OH)2) surfaces under GCS conditions (368 K, 102 atm) in 1 M NaCl. Phlogopite served as a model for clay minerals in potential GCS sites. During the reaction, dissolution of phlogopite was the predominant process. Although the bulk solution was not supersaturated with respect to potential secondary mineral phases, interestingly, nanoscale precipitates formed. Atomic force microcopy (AFM) was utilized to record the evolution of the size, shape, and location of the nanoparticles. Nanoparticles first appeared on the edges of dissolution pits and then relocated to other areas as particles aggregated. Amorphous silica and kaolinite were identified as the secondary mineral phases, and qualitative and quantitative analysis of morphological changes due to phlogopite dissolution and secondary mineral precipitation are presented. The results provide new information on the evolution of morphological changes at CO2-water-clay mineral interfaces and offer implications for understanding alterations in porosity, permeability, and wettability of pre-existing rocks in GCS sites.

    Topics: Aluminum Silicates; Carbon Dioxide; Chemical Phenomena; Chemical Precipitation; Clay; Geological Phenomena; Salts

2010