clay and 2-4-dichlorophenol

clay has been researched along with 2-4-dichlorophenol* in 3 studies

Other Studies

3 other study(ies) available for clay and 2-4-dichlorophenol

ArticleYear
Modelling 2,4-dichlorophenol bioavailability and bioaccumulation by the freshwater fingernail clam Sphaerium corneum using artificial particles and humic acids.
    Environmental pollution (Barking, Essex : 1987), 2007, Volume: 145, Issue:1

    The complex and variable composition of natural sediments makes it very difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches have been proposed to overcome this problem, including an experimental model using artificial particles with or without humic acids as a source of organic matter. For this work, we have applied this experimental model, and also a sample of a natural sediment, to investigate the uptake and bioaccumulation of 2,4-dichlorophenol (2,4-DCP) by Sphaerium corneum. Additionally, the particle-water partition coefficients (K(d)) were calculated. The results showed that the bioaccumulation of 2,4-DCP by clams did not depend solely on the levels of chemical dissolved, but also on the amount sorbed onto the particles and the characteristics and the strength of that binding. This study confirms the value of using artificial particles as a suitable experimental model for assessing the fate of sediment-bound contaminants.

    Topics: Aluminum Silicates; Animals; Biological Availability; Bivalvia; Chlorophenols; Clay; Fresh Water; Geologic Sediments; Humic Substances; Hydrogen-Ion Concentration; Models, Biological; Resins, Synthetic; Water Pollutants, Chemical

2007
Sorption and desorption behavior of chloroanilines and chlorophenols on montmorillonite and kaolinite.
    Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 2006, Volume: 41, Issue:6

    The bioavailability of pollutants, pesticides and/or their degradation products in soil depends on the strength of their sorption by the different soil components, particularly by the clay minerals. This study reports the sorption-desorption behavior of the environmentally hazardous industrial pollutants and certain pesticides degradation products, 3-chloroaniline, 3,4-dichloroaniline, 2,4,6-trichloroaniline, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol on the reference clays kaolinite KGa-1 and Na-montmorillonite SWy-l. In batch studies, 2.0 g of clay were equilibrated with 100.0 mL solutions of each chemical at concentrations ranging from 10.0 to 200.0 mg/L. The uptake of the compounds was deduced from the results of HPLC-UV-Vis analysis. The lipophilic species were best retained by both clay materials. The most lipophilic chemical used in the study, 2,4,6-trichloroaniline, was also the most strongly retained, with sorption of up to 8 mg/g. In desorption experiments, which also relied on HPLC-UV-Vis technique, 2,4,6-trichloroaniline was the least desorbed from montmorillonite. However, on kaolinite all of the compounds under study were irreversibly retained. The experimental data have been modelled according to the Langmuir and Freundlich isotherms. A hypothesis is proposed concerning the sorption mechanism and potential applications of the findings in remediation strategies have been suggested.

    Topics: Adsorption; Aluminum Silicates; Aniline Compounds; Bentonite; Chlorophenols; Chromatography, High Pressure Liquid; Clay; Dose-Response Relationship, Drug; Geologic Sediments; Kaolin; Soil Pollutants; Solubility

2006
Sequential sorption and desorption of chlorinated phenols in organoclays.
    Water science and technology : a journal of the International Association on Water Pollution Research, 2003, Volume: 47, Issue:9

    Effect of pH on the sorption and desorption of the chlorinated phenols (2-chlorophenol and 2,4-dichlorophenol) in HDTMA-montmorillonite organoclays was investigated using sequential batch experiments. 2,4-dichlorophenol exhibited higher affinity in both sorption and desorption than 2-chlorophenol at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 80% and 95% of 2-chlorophenate and 2,4-dichlophenate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation during the previous sorption stage. No appreciable desorption resistance of the chlorinated phenols was observed in organoclays after sequential desorptions. Affinity of both chlorophenols in bisolute competitive sorption and desorption was reduced compared to that in a single-solute system due to the competition between solutes. The ideal adsorbed solution theory coupled with the single-solute Freundlich model successfully predicted the bisolute competitive sorption and desorption equilibria.

    Topics: Adsorption; Aluminum Silicates; Anthelmintics; Bentonite; Chlorophenols; Clay; Hydrogen-Ion Concentration; Water Purification

2003