Page last updated: 2024-08-25

clarithromycin and thioridazine

clarithromycin has been researched along with thioridazine in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (41.67)29.6817
2010's6 (50.00)24.3611
2020's1 (8.33)2.80

Authors

AuthorsStudies
Keserü, GM1
Nagashima, R; Nishikawa, T; Tobita, M1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Jia, L; Sun, H1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
Glen, RC; Lowe, R; Mitchell, JB1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Barreca, ML; Cannalire, R; Cecchetti, V; Couto, I; Felicetti, T; Machado, D; Manfroni, G; Massari, S; Sabatini, S; Santos Costa, S; Tabarrini, O; Viveiros, M1
Butler-Laporte, G; Menzies, D; Winters, N1
Ammerman, NC; Bax, HI; de Steenwinkel, JEM; de Vogel, CP; Mudde, SE; Schildkraut, JA; van Ingen, J1

Reviews

2 review(s) available for clarithromycin and thioridazine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Efficacy and safety of World Health Organization group 5 drugs for multidrug-resistant tuberculosis treatment.
    The European respiratory journal, 2015, Volume: 46, Issue:5

    Topics: Amoxicillin; Antitubercular Agents; Azithromycin; Cilastatin; Clarithromycin; Clavulanic Acid; HIV Infections; Humans; Imipenem; Isoxazoles; Macrolides; Meropenem; Mycobacterium tuberculosis; Oxazolidinones; Randomized Controlled Trials as Topic; Thienamycins; Thioridazine; Treatment Outcome; Tuberculosis, Multidrug-Resistant; World Health Organization

2015

Other Studies

10 other study(ies) available for clarithromycin and thioridazine

ArticleYear
Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods.
    Bioorganic & medicinal chemistry letters, 2003, Aug-18, Volume: 13, Issue:16

    Topics: Cation Transport Proteins; Databases, Factual; Discriminant Analysis; Ether-A-Go-Go Potassium Channels; Holography; Linear Models; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2003
A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors.
    Bioorganic & medicinal chemistry letters, 2005, Jun-02, Volume: 15, Issue:11

    Topics: Animals; CHO Cells; Cricetinae; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Potassium Channel Blockers; Potassium Channels, Voltage-Gated

2005
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Support vector machines classification of hERG liabilities based on atom types.
    Bioorganic & medicinal chemistry, 2008, Jun-01, Volume: 16, Issue:11

    Topics: Animals; Arrhythmias, Cardiac; CHO Cells; Computer Simulation; Cricetinae; Cricetulus; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Chemical; Patch-Clamp Techniques; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Predictive Value of Tests; ROC Curve

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium.
    European journal of medicinal chemistry, 2017, Nov-10, Volume: 140

    Topics: Anti-Bacterial Agents; Drug Design; Genistein; Mycobacterium avium; Quinolones

2017
Unraveling antibiotic resistance mechanisms in Mycobacterium abscessus: the potential role of efflux pumps.
    Journal of global antimicrobial resistance, 2022, Volume: 31

    Topics: Amikacin; Anti-Bacterial Agents; Cefoxitin; Clarithromycin; Clofazimine; Drug Resistance, Multiple, Bacterial; Humans; Microbial Sensitivity Tests; Mycobacterium abscessus; Thioridazine; Tigecycline; Verapamil

2022